Some Results on (σ, τ) -Left Jordan Ideals in Prime Rings

Kassim Abdul-Hameed Jassim

Department of Mathematics, College of Science, University of Baghdad.

Abstract

In this paper we have proved the following results. Let *R* be a prime ring, *U* be (σ, τ) -left Joradan ideal of *R* where $\sigma, \tau: R \rightarrow R$ be two automorphisms of *R* and *d* be a nonzero derivation of *R*. (1) If $(R,a)_{\sigma,\tau}=0$, then $a \in Z(R)$. (2) If aU=0 (or Ua=0) and $a \in R$, then a=0 or $U \subset Z(R)$. (3) If characteristic of *R* not equal 2 and $U \subset C_{\sigma,\tau}$, then $\sigma(u)+\tau(u)\in Z(R)$ for all $u\in U$.(4) If d(U)=0, $d\tau=\tau d$ and $d\sigma=\sigma d$, then $\sigma(u)+\tau(u)\in Z(R)$ for all $u\in U$.

Introduction

Over the last thirty years, many authors studied Lie ideals & Lie ideals with derivation and proved many results when the ring is prime or semiprime see [8],[9].In the end of the twentieth century and the beginning of this century, Neset Aydin , H. Kandamar, K. Kaya, Ogolbasi O., Studied (σ , τ)-Lie ideals with derivation and generalized many results from Lie ideals to (σ , τ) Lie ideals, see [1], [2], [3], [4], [5].

Neset Aydin ,H. Kandamar and K. Kaya in [5] proved that if *R* is a prime ring and *U* is a (σ,τ) -right Jordan ideal of *R*, then (i) If $U \subset Z(R)$, then *R* is commutative. (ii) If aU=0 (or Ua=0) and $a \in R$, then a=0. (iii) If $U \subset C_{\sigma,\tau}$, then *R* is commutative .

In this paper we want to study the above results in (σ,τ) -left Jordan ideal of R and generalized some results from Lie ideals to (σ,τ) -left jordan ideals . So, we must recall the basic terms that we need them in this research. Let U be an additive subgroup of R. σ,τ : $R \rightarrow R$ be two mapping of R. Then we can defined Uis a (σ,τ) -right Jordan Ideal of R if $(U,R)_{\sigma,\tau} \subset U$. Also, U is (σ,τ) -Left Jordan Ideal of R if $(R,U)_{\sigma,\tau} \subset U$. So, a (σ,τ) -Jordan ideal of R, if Uis a (σ,τ) -right and Left Jordan Ideal of R [5].

Let $d: R \to R$ be an additive mapping. If d(xy)=d(x)y+xd(y) for all $x,y\in R$, then d is called a derivation of R [6]. Recall that a ring R is a prime if aRb=0, $a,b\in R$, implies that either a=0 or b=0 [6]. Also, a (σ,τ) -centralizer of R which is denoted $C_{\sigma,\tau}$ is the set $\{c\in R; c\sigma(x)=\tau(x)c, \text{ for all } x\in R, \text{ see}[7].$

In this paper we consider *R* to be a prime ring, U is a (σ, τ) -Left Jordan ideal of *R* and σ, τ are two automorphisms of *R*. Also, we considered *d* be a derivation of *R* to prove some of our results. Also, the following identities are used in this paper.

- For all $x, y, z \in R$, see[8].
- (1) [xy,z] = x [y,z] + [x,z] y
- (2) [x,yz] = [x,y] z + y [x,z]
- (3) $[x,y]_{\sigma,\tau} = x \sigma(y) \tau(y)x$
- (4) $[xy,z]_{\sigma,\tau} = x [y, \sigma(z)] + [x,z]_{\sigma,\tau} y$
- = $x[y,z]_{\sigma,\tau}$ +[$x, \tau(z)$]y .Also the Jordan product is define as follows.
- (5) $(x,y)_{\sigma,\tau} = x \sigma(y) + \tau(y)x$
- (6) $(xy,z)_{\sigma,\tau} = x(y,z)_{\sigma,\tau} [x,\tau(z)]y$
- (6) $(xy,z)_{\sigma,\tau} = (x,z)_{\sigma,\tau} y + x[y,\sigma(z)]$

Results

<u>Theorem(2.1):</u>

If $(R,a)_{\sigma,\tau}=0$, then $a \in \mathbb{Z}(R)$.

Proof:

By hypothesis $(R,a)_{\sigma,\tau}=0$, then for all $x,y \in R$, we have

0 = $(xy,a)_{\sigma,\tau}=x(y,a)_{\sigma,\tau}$ - $[x,\tau(a)]y$ =- $[x,\tau(a)]y$ by using hypothesis.So,we have $[x,\tau(a)]y$ =0 for all $x, y \in R$. Then $x\tau(a)y$ - $\tau(a)xy$ =0.Since τ is automorphism then τ^{-1} exists and $\tau^{-1}(x\tau(a)y$ - $\tau(a)xy)$ =0. Also, , τ^{-1} is automorphism , then $\tau^{-1}(x)a\tau^{-1}(y)-a\tau^{-1}(x)\tau^{-1}(y)$ =0.So, we get $[\tau^{-1}(x),a]\tau^{-1}(y)$ =0 , for all $x, y \in R$. Thus $[\tau^{-1}(R),a]\tau^{-1}(R)$ =0. So, we get $a \in Z(R)$.

Theorem(2.2):

If aU=0 (or Ua=0) and $a \in R$, then a=0 or $U \subset Z(R)$.

Proof:

By hypothesis aU=0, then for all $x, y \in R$, $u \in U$ we have

 $0 = a(xy,u)_{\sigma,\tau} = a(x,u)_{\sigma,\tau} y + ax[y, \sigma(u)]$

 $0 = ax[y, \sigma(u)]$. Then $ax[y, \sigma(u)]=0$ for all $x,y \in R$, $u \in U$. Since *R* is prime ring, we get a=0 or $U \subset Z(R)$.

For another side if we have Ua=0, then for all $x \in R$, $u, v \in U$

 $0 = (xy,u)_{\sigma,\tau} a = x (y,u)_{\sigma,\tau} a - [x, \tau(u)]ya$

=-[x, $\tau(u)$]*ya* .Then [*x*, $\tau(u)$]*ya* =0 for all *x*, *y* $\in R$, $u \in U$. Since τ is automorphism ,we get [$\tau^{-1}(x), u$] $\tau^{-1}(y)a=0$ for all *x*, $y \in R$. Also, we have[$\tau^{-1}(R), U$] $\tau^{-1}(R)a=0$.This implies [*R*,*U*]*Ra*=0. Since *R* is prime ring , we get *a*=0 or $U \subset Z(R)$.

Theorem(2.3):

If *R* has a characteristic not equal 2 and $U \subset C_{\sigma,\tau}$, then $\sigma(u) + \tau(u) \in Z(R)$ for all $u \in U$.

Proof:

If σ, τ are any two automorphisms , then by the hypothesis, we have

 $(v,u)_{\sigma,\tau} \in C_{\sigma,\tau}$ for all $u, v \in U$. Then for all $r \in R$, we get

 $0=[v\sigma(u)+\tau(u)v,r]_{\sigma,\tau}$ = $[v\sigma(u),r]_{\sigma,\tau}+[\tau(u)v,r]_{\sigma,\tau}$ = $v[\sigma(u),\sigma(r)]+[v,r]_{\sigma,\tau}\sigma(u)+\tau(u)[v,r]_{\sigma,\tau}$ + $[\tau(u),\tau(r)]v$ = $v\sigma([u,r])+\tau([u,r])v+([v,r]_{\sigma,\tau},u)_{\sigma,\tau}$ = $v\sigma([u,r])+\tau([u,r])v$. Since $U \subset C_{\sigma,\tau}$, then we have $2v\sigma([u,r]) = 0$ for all $u,v \in U, r \in R$.

Also, we have *R* has a characteristic not 2, then $v\sigma([u,r])=0$ for all $u,v \in U$, $r\in R$. Therefore, $U \subset Z(R)$. Then we get $\sigma(u)+\tau(u)\in Z(R)$ for all $u\in U$.

Theorem (2.4):

Let d(U)=0, $d\tau=\tau d$ and $d\sigma = \sigma d$. Then $\sigma(u)+\tau(u)\in Z(R)$ for all $u\in U$.

Proof:

By the hypothesis d(U)=0, we have for all $u \in U$, $x \in R$. $0 = d((x,u)_{\sigma,\tau})=d(x\sigma(u)+\tau(u)x)=d(x)\sigma(u)+xd(\sigma(u))+d(\tau(u))x + \tau(u)d(x)$.Since $d\tau=\tau d$ and $d\sigma=\sigma d$, we get

 $d(x)\sigma(u) + \tau(u)d(x)=0$ for all $u \in U$, $x \in R$. That is $(d(x),u)_{\sigma,\tau} = 0$ for all $u \in U$, $x \in R$.So, we replace *x* by vx, $v \in U$.So, we have

$$0=(d(vx),u)_{\sigma,\tau}=(d(v)x+vd(x),u)_{\sigma,\tau}$$

= $(d(v)x,u)_{\sigma,\tau}+(vd(x),u)_{\sigma,\tau}=(vd(x),u)_{\sigma,\tau}$
= $v(d(x),u)_{\sigma,\tau}-[v,\tau(u)]d(x)$ for all
 $u, v \in U, x \in R$. Then, we get

 $0=[v,\tau(u)] d(x)$ for all $u,v \in U, x \in R$. Replace x by xy, $y \in R$.So, we have $0 = [v, \tau(u)] d(xy) = [v, \tau(u)] d(x)y +$ $[v,\tau(u)]xd(y)$ for all $u,v \in U, x,y \in R$. Then $[v,\tau(u)]xd(y)=0$ for all $u,v \in U$, $x, y \in R$. Thus $[v, \tau(u)]Rd(y)=0$. So, by a primeness of R and a non zero derivation d we get $[v,\tau(u)]=0$ for all $u,v \in U....(1)$. For another side $0 = (d(xv), u)_{\sigma,\tau} = (d(x)v + xd(v), u)_{\sigma,\tau}$ $= (d(x)v,\mathbf{u})_{\sigma,\tau} + (x\mathbf{d}(v),u)_{\sigma,\tau} = (d(x)v,u)_{\sigma,\tau}$ $= d(x)[v, \sigma(u)] + (d(x), u)_{\sigma,\tau} v.$ $= d(x) [v,\sigma(u)].$ So by the same way we get $[v,\sigma(u)]=0$ for all $u,v \in U...(2)$. By the adding these relations (1) and (2),

We get $[v, \sigma(u)+\tau(u)]=0$ for all $u,v \in U$. That is mean $\sigma(u)+\tau(u)$ in the center of U. But the center of U is subset of center of R, then $\sigma(u)+$ $\tau(u) \in Z(R)$, for all $u \in U$.

References

- [1] Aydin, N. On one sided (σ,τ)-Lie ideals in prime rings .Tr.J. of Math., Vol.21 ,1997 pp. 295-301.
- [2] Aydin N. Notes on generalized Lie ideals. Analele Universitatii din Timisoara seria, Mathematics – informitica-VOL, XXXVI (2), 1999, pp 7-13.
- [3] Aydin, N. Kaya, K. Ogolbasi O. Some results for generalized Lie ideals with derivation II, Applied Mathematics E-Notes, Vol.1, 2001, pp 24-30.
- [4] Aydin, N. Kaya, K. Ogolbasi O. Some results on one sided generalized Lie ideals with derivation, Mathematics Notes, Vol.3, 2002, pp 83-89.
- [5] Aydin Neset, H. Kandamar and K. Kaya, Generalized Jordan structure of Prime rings, Doga Tr.J. of Mathematics Vol. 17, 1993, pp 251-258.
- [6] Herstein, I.N. Non commutative rings, Univ.of Chicago, The mathematica Associating of American 1968.
- [7] Herstein, I.N., Topics in ring theory. Univ.of Chicago press, Chicago, 1969.
- [8] Herstein, I.N. On the Lie structure of an associative ring, Journal of Algebra Vol.14, 1970, pp.561-571.
- [9] Herstein, I.N.A note on derivation II., No.22, Vol. 4, 1979, pp 509-511.

الخلاصة في هذا البحث تمكنا من بر هنة النتائج التالية . ليكن في هذا البحث تمكنا من بر هنة النتائج التالية . ليكن R = 2 مثالي جوردان R = 2 مثالي جورد R = 2 مثالي جوردان R = 2 مثالي جور