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Abstract

Throughout this paper R represents commutative ring with identity and M is a unitary left R-
module, the purpose of this paper is to study a new concept, (up to our knowledge), named St-
closed submodules. It is stronger than the concept of closed submodules, where a submodule N of
an R-module M is called St-closed (briefly N <stc M) in M, if it has no proper semi-essential
extensions in M, i.e if there exists a submodule K of M such that N is a semi-essential submodule of
K then N = K. An ideal | of R is called St-closed if | is an St-closed R-submodule. Various
properties of St-closed submodules are considered.
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Introduction St-closed submodules in the class of

Let R be a commutative ring with identity multiplication modules. In S3 we study
and let M be a unitary left R-module, and all modules satisfying the chain conditions on
R-modules under study contains prime St-closed submodules.

submodules. It is well known that a nonzero
submodule N of M is called essential (briefly

< M), if NN L for h nonzer .
gjb_r;odlj)iel LN of Mi [(g]) anea; ngnizrg properties of St-closed submodules such as the

submodule N of M is called semi-essential trangitive_property. Moreover, we study the
(briefly N <sem M), if N N P # (0) for cach relationships between St-closed submodules

nonzero prime R- submodule P of M [2]. and other submodules.

S1: St-closed submodules
In this section we investigate the main

Equivalently, a submodule N of an R-module Definition (1.1):
M is called semi-essential if whenever N N P Let M be an R-module, a submodule N of M is
= (0), then P = (0) for every prime submodule called St-closed in M (briefly N <stc M), if N
P of M [11], where a submodule P of M is has no proper semi-essential extensions in M,
called prime, if whenever rm e P forr eRand ~ 1-€ if there exists a submodule K of M such
m €M, then either m e P or r e (PiM) [14]. that N is a §em|-essent|_al submodule of K the_n
A submodule N of M is called closed N = K. An ideal I of R is called an St-closed, if
submodule (briefly N < M), if N has no ItisSt-closed R-submodule.
proper essential extensions in M, i.e if N <e K Examples and Remarks (1.2):
<M then N =K [6]. In our work we introduce 1) Consider the Z-module M = Zg @ Z. In
a new concept (up to our knowledge), named this module there are eleven submodules
St-closed submodules, which is stronger than which are <(0,0)>, <(1,0)>, <(0,1)>,
the concept of closed submodules, where a <1,1)> <(2,00> <2 1> <4 0)>,
submodule N of an R-module M is called <(%,1)>, <(0, 1), (4, 0)> <(2,0), (& 1)>,
St- clqsed |.f N hqs no proper semi-essential and M. The submodules <(0, 1)>, <(@, 1)>,
extensions in M, i.e if N <em K < M then and M are St-closed in M, since they have
N = K. This paper consist of three sections, in no proper semi-essential extensions in M.
section one we investigate the main properties On the other hand, the submodules
of _S@-closed submodules, such as the <0,0)>, <(1,T)>, <(1,0)> <2 0)>,
transitively property. Also we study the <(,1)> <(&0)> <(,1), (& 0)> and

relationships between St-closed submodules,
closed submodules and y-closed submodules.
In S2 we study the behavior of the class of

<(2,0), (4,1)>, are not St-closed
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submodules in M, since
semi-essential extensions in M.

2) Every R-module M is an St-closed
submodule in M.,

3) (0) may not be St-closed submodule of M,
for example (0) is not St-closed submodule
in the Z-module, Z>.

4) If a submodule N of an R-module M is a
semi-essential and an St-closed, then
N =M.

5) If N is an St-closed submodule in M then
(NgRM) need not be St-closed ideal in R, for
example; (8) is an St-closed submodule in
the Z-module Z,4, while ((8)3Z,4) = 8Z is
not St-closed ideal in Z.

6) A direct summand of an R-module M is not
necessary St-closed submodule in M, for
example: Consider the Z-module, Zio,
where Z;, = (3)@® (4). The direct
summand (4) = {0, 4, 8} is an St-closed
submodule in Zi2, since (4) has no proper
semi-essential extensions in Zi. But the
direct summand (3) = {0, 3, 6, 9} of Z12 is
not St-closed submodule since (3) is a
semi-essential submodule of Zi,. Also the
Z-module, Zss =(4) @ (9), it is clear
that (9) is a direct summand of Zss but not
St-closed submodule in Zzs.

7) Let M be an R-module, if M = A @ B, then
even though A or B or both of them are
prime submodules of M, then neither A nor
B are necessary St-closed submodules in M.
For example: the Z-module Zzo = (5) @ (6)
= (2) ® (15), both of (2) and (5) are
prime submodules of Zs and direct
summand, but neither (2) nor (5) are
St-closed submodules in Z3o. In fact both of
(2) and (5) are semi-essential suomodules
of Zso.

8) Let M be an R-module, and let A be an
St-closed submodule of M. If B is a
submodule of M such that A = B, then it is
not necessary that B is an St-closed
submodule in M. For example, the
Z-module Z is an St-closed submodule in Z,
and Z 3Z, but 3Z is not St-closed
submodule in Z, since 3Z is a semi-
essential submodule of Z.

Remarks (1.3):
1) Every St-closed submodule in an
R-module M is a closed submodule in M.

they have

~
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Proof (1):

Let N be an St-closed submodule in M, and
let K <M with N < K < M. Since N <¢ K,
then N <sem K [2, Example (2), P.49]. But N is
an St-closed submodule in M, thus N = K, that
is N is a closed submodule in M.

The converse is not true in general, for
example: In the Z-module Z24 we note that (3)
is a closed submodule in Zos, but it is not
St-closed. Also (9) is a closed submodule in
Z3g, but it is not St-closed in Zszs.

2) Let N be an St-closed submodule of M. If

B is a relative M-complement of N, then N

is a relative M-complement of B, where a

relative complement for K in M is any

submodule L of M which is maximal with

respect to the property K N L =(0) [6].
Proposition (1.4):

Let M be an R-module, and let (0) # C <
M, then there exists an St-closed submodule H
in M such that C <sem H.

Proof:

Consider the set V = {K| K is a submodule
of M such that C <eem K}. It is clear that
V # @. By Zorn’s Lemma, V has a maximal
element say H. In order to prove that H is an
St-closed submodule in M; assume that there
exists a submodule D of M such that H <sem D
< M. Since C <sem H and H <sem D, so by [11,
Proposition (1.5)], C <em D. But this a
contradicts the maximality of H, thus H = D.
That is H is an St-closed submodule in M with
C Ssem H

We cannot prove the transitive property for
St-closed submodules. However under some
conditions we can prove this property as we
see in the following result.

Proposition (1.5):

Let A and B be submodules of an R-module
C. If A is an St-closed in B and B is an
St-closed in C, then A is St-closed in C
provided that B contained in (or containing)
any semi-essential extension of A.

Proof:

Let L < C such that A <sem L < C. By
assumption we have two cases: If L < B, since
A is an St-closed submodule in B then A = L,
hence A is an St-closed submodule in C. If
B <L, since A <sem L, S0 by [2, Proposition 4],
B <wm L. But B is an St-closed in C, thus
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B = L. That is A <sem B. On the other hand, A
is an St-closed submodule in B, so A = B,
hence A is an St-closed submodule in C.

Recall that an R-module M is called
chained if for each submodules A and B of M
either A<BorB<A[13].

Corollary (1.6):

Let M be a chained module, and let A and
B be submodules of M such that A < B <M. if
A is an St-closed submodule in B and B is an
St-closed submodule in M then A is an
St-closed submodule in M.

Proof:

Let L < M such that A <sm L < M. since M
is a chained module, then either L < B or
B < L, and the result follows as the same
argument which used in the proof of the
Proposition (1.5).

We can put other condition to get the
transitive property of St-closed submodules,
but before that we need to recall some
definitions and give some remarks.

Recall that a nonzero R-module M is called
fully essential, if every nonzero semi-essential
submodule of M is essential submodule of M
[12], and an R-module M is called fully prime,
if every proper submodule of M is a prime
submodule [3], and every fully prime module
is a fully essential module [11].

Proposition (1.7):

Let N be a nonzero closed submodule of an
R-module M. If every semi-essential
extensions of N is a fully essential submodule
of M, then N is an St-closed submodule in M.

Proof:

Let N be a nonzero closed submodule of M,
and let L < M such that N <sem L< M. By
assumption L is a fully essential module,
therefore N <¢ L. But N <¢ M, thus N = L.
That is N <sic M.

Remark (1.8):

If an R-module M is fully prime, then
every nonzero closed submodule in M is an
St-closed submodule in M.

Proof:

Let N be a nonzero closed submodule of M,
and let N <sem L <M. Then by [11, Proposition
(2.1)], N <¢ L. But N <¢ M, thus N = L, and
we are don.
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Proposition (1.9):

Let C be an R-module and let (0) # A <
B < C. Assume that every semi-essential
extension of A is a fully essential submodule
of M. If A <stc B and B <stc C, then A <st C.

Proof:

Since A <si¢ B and B <si¢ C, then by
Remark (1.3) (1), A <c B and B <¢ C. this
implies that A < C, [6, Proposition (1.5),
P.18]. And by Proposition (1.7), A is an
St-closed submodule in C.

In a similar proof of Proposition (1.9), and
by using Remark (1.8) instead of Proposition
(1.7) we can prove the following.

Proposition (1.10):

Let M be a fully prime module, and let (0)
#A <stc B and B <sic M, then A <stc M.

The following remarks verify the hereditary
of St-closed property between two submodules
of an R-module M.

Remark (1.11):

Let A and B are submodules of an
R-module M such that A <B <M. If B is an
St-closed submodule in M, then A need not be
St-closed submodule in M. For example; the
Z-module Z is an St-closed submodule of Z
and 2Z < Z, while 2Z is not St-closed

submodule in Z.

Remark (1.12):

If A and B are submodules of an R-module
M such that A < B < M. If A is an St-closed
submodule in M, then B need not be St-closed
submodule in M. For example; the Z-module Z
and the submodules A = (0) and B = 2Z. Note
that (0) is an St-closed submodule in Z, but 2Z
is not St-closed submodule in Z, since 2Z is a
semi-essential submodule of Z.

Proposition (1.13):

If every submodule of M is an St-closed,
then every submodule of M is a direct
summand of M.

Proof:

Since every submodule of M is an
St-closed, and by Remarks (1.3) (1), every
St-closed submodule is a closed, so every
submodule of M is a closed. Hence the result
follows from [8, Exercises (6- c), P.139].

It is well known that the intersection of two
closed submodules need not be closed



submodule for example: Consider the
Z-module M = Z @ Z, If we take A = < (1,0)
> and B = < (1,1) >, it is clear that both of
them are direct summands of M, so they are
closed in M. But A N B = < (2,0) > and
(A N B) <¢ B, that is A N B is not closed in M
[6, Example (1.6), P.19]. However, we have
the following.

Proposition (1.14):

Let A and B be St-closed submodules in an
R-module M, then A N B is an St-closed
submodule in M.

Proof:

Let L <M such that A N B <sem L < M. By
[2, Corollary (6), P.49] A <¢em L and B <gem L.
Since A and B are St-closed submodules in M,
then A=L=B,hence ANB=L.

Proposition (1.15):

Let M be an R-module, and let A and B be
submodules of M such that A <B <M. If A is
an St-closed submodule in M, then A is an
St-closed submodule in B.

Proof:

Suppose that A <sem L <B, so L <M. But A
is an St-closed submodule in M, therefore
A=L.

Corollary (1.16):

Let A and B be submodules of an R-module
M. If ANB is an St-closed submodule in M,
then A N B is an St-closed submodule in A
and B.

Corollary (1.17):

If N and K are St-closed submodules in an
R-module M, then N and K are St-closed
submodules in N + K.

Proof:

Since N < N + K < M, so by Proposition
(1.15) we are done.

We can proof the following proposition by
using [12, Lemma (1.15)]. In fact this Lemma
in [12] is true when we instead the condition
"fully prime"™ by the condition "fully
essential”.

Proposition (1.18):

Let M = M1 @ Mz be a fully essential
R-module where M1 and M2 be submodules,
and let A and B be nonzero submodules of M1
and M respectively. If A and B are St-closed
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submodules in Mi and Mz respectively.
Then A @ B is an St-closed submodule in
M1 @ My, provided that ann M1 + ann M2 = R.

Proof:

Assume that A @ B <sem L < M. Since ann
M: + ann M2 = R, so by the same proof of
[1, Proposition (4.2)], L = L1 & L», where
Li<Mjiand Lo< M. Therefore A @ B <eem L1
@ Lo, and by [12, Lemma (1.15)], A <sem L1
and B <gm L2. But both of A and B are
St-closed submodules in M. So that A = L1 and
B=L hence A®B=L16® L.

Proposition (1.19):

Let M = M1 @ M2 be an R-module where
Mi and M2 be submodules of M, and let A, B
be St-closed submodule in M; and M
respectively. Then A @ B is an St-closed
submodule in M1 @ Mg, provided that aan
Mi; + ann M2 = R. And all semi essential
extensions of A @ B are fully essential
modules.

Proof:

Assume that A @ B <seem L < M. By the
same argument of Proposition (1.18) we have
A OO B <¢em L1 & Ly, where L = L1 & L.
Since L is a fully essential module, then
A @ B <¢ L1 & Lo, this implies that A <e L1
and B < L. It is clear that both of A and B are
closed submodules in M, thus A = L; and
B=Lhence A@B=L16 L.

Theorem (1.20):

Let M = M1 @& Mz be a fully prime
R-module where M1 and M2 be submodules of
M and let A, B be nonzero submodules of M1
and M2 respectively. Then A @ B is an
St-closed submodule in My @ M if and only
if A and B are St-closed submodules in M; and
M respectively.

Proof:

=) Assume that A <em K < Mi. Since
B <sem B, we can easily show that K @ B is a
fully prime module. In fact if X is a proper
submodule of K @& B, and since M is a
fully prime module, then X is a prime
submodule of M. By [7, Lemma (3.7)], X is a
prime submodule of K & B, and by [12,
Lemma (1.15)], A @ B <cem K @ B < M. But
A @ B <s;cM, thus A ® B =K @ B, that is
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A = K. In similar way we can prove that
B <stc M.

<) Since in a fully prime module the St-closed
submodule and closed submodule are
equivalent, so the result follows from [6,
Exercises (15), P.20].

Recall that the prime radical of an
R-module M is denoted by rad(M), and it is
the intersection of all prime submodules of M
[10].

Proposition (1.21):

Let f: M — M’ be an R-epimorphism from
an R-module M to an R-module M', and let B
be a submodule of M such that ker f < rad(M)
N B. If B is an St-closed submodule in M then
f(B) is an St-closed submodule in M.

Proof:

Let K' be a submodule of M’ such that f(B)
<sem K' < M'. Since ker f € rad(M), then
f1(B) <eem f Y(K') < M [2]. We can easily
show that f "1f(B) = B since ker f € B. This
implies that B <em f! (K'). But B is an
St-closed submodule in M, then B = f! (K).
Since f is epimorphism so f(B) = K', and we
are done.

Corollary (1.22):
Let A and B be submodules of an R-module
M, such that A < rad(M) N B. if B is an

St-closed submodule in M, then % is an

St-closed submodule in %.

Recall that a singular submodule defined by
Z(M) = {x € M: ann(x) <¢ R}. If Z(M) = M,
then M is called the singular module. If Z(M)
=0 then M is called a nonsingular module, [6].
A submodule N of an R-module M is called

y-closed submodule of M, if is a

nonsingular module [6, P.42]. We cannot find
a direct relation between St-closed and
y-closed submodules. However, under some
conditions we can find some cases of this
relationship as the following proposition
shows.

Proposition (1.23):

If M is a fully prime R-module, then every
nonzero y-closed submodule is an St-closed
submodule.

Proof:
Let A be a nonzero y-closed submodule in
M, then by [9, Remarks and Examples (2.1.1)
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(3)], A is a closed submodule in M and by
Remark (1.8), A is an St-closed submodule in
M.

Proposition (1.24):

Let M be a nonsingular R-module, if a
submodule N of M is an St-closed, then N is a
y-closed submodule.

Proof:

Let N be an St-closed submodule in M, by
Remarks (1.3) (1) N is a closed submodule
in M. But M is a nonsingular module, so
by [9, Proposition (2.1.2)], N is a y-closed
submodule of M.

Another proof:
Assume that M is a nonsingular R-module,
and let N be an St-closed submodule in M. Let

Z(%) = % , where B is a submodule of M with

N <B. Clearly% is a singular module. Now N

< B and M is a nonsingular module, therefore
B is a nonsingular submodule of M. Then by
[6, Proposition (1.21), P.32], N < B, hence N
<sem B. But A is an St-closed submodule in M,

thus N = B, and Z(%) = (0). So % is a
nonsingular module, and by the definition of

y-closed submodule, N is a y-closed
submodule in M.

Theorem (1.25):

Let M be a fully prime R-module, and let N
be a nonzero submodule of M. Consider the
following statement:

1. Nisay-closed submodule.

2. Nisa closed submodule.

3. Nisan St-closed submodule.
Then (1) = () © (3), and if M is a
nonsingular module, then (3) = (1)

Proof:

(1) = (2) [9, Remarks and Examples (2.1.1),
3]

(2) & (3) Since M is a fully prime module
then by, Remark (1.8), N is an St-closed
submodule. The converse is clear.

(3) = (1) Since M is a nonsingular module,
then by Proposition (1.24), N is a y-closed
submodule.

S2: St-closed submodules in multiplication
modules

In this section we study the behavior of the
St-closed submodules in the class of



multiplication modules. Also we study the
hereditary  property of the  St-closed
submodules between R-modules and R itself.

Recall that An R-module M is called
multiplication module, if every submodule N
of M is of the form IM for some ideal | of R
[4]. Recall that a nonzero prime submodule N
of an R-module M is called minimal prime
submodule of M if whenever P is a nonzero
prime submodule of M such that P € N, then
P =N [5].

Proposition (2.1):

Let M be a faithful and multiplication
R-module, and let N be a nonzero prime
submodule of M. If N is an St-closed
submodule in M, then N is a minimal prime
submodule of M.

Proof:

Suppose that N is not minimal prime
submodule of M. By [2, Prop(3), P.53], N is a
semi-essential submodule of M. But N is an
St-closed, thus N = M. On the other hand N is
a prime submodule that is N must be a proper
submodule of M, so we get a contradiction.

Proposition (2.2):

Let M be a nonzero multiplication
R-module with only one nonzero maximal
submodule N, then N cannot be St-closed
submodule in M.

Proof:

Assume that N is an St-closed submodule in
M, so by [11, Proposition (2.13)] N <sem M. By
Examples and Remarks (1.2) (4) N = M, but
this contradicts with a maximality of N,
therefore N is not St-closed submodule in M.

Remark (2.3):

In Proposition (2.2), we get the same result
when we replace the condition "nonzero
multiplication” by the condition "finitely
generated”, and Dby using [11, Proposition
(2.14)] instead of [11, Proposition (2.13)].

Proposition (2.4):

Let M be a faithful and multiplication

module such that M satisfies the condition (*),
if 1 is an St-closed ideal in J then IM is an
St-closed submodule in JM.
Condition (*): For any R-module M and any
ideals P and K of R such that P is a prime ideal
of K, implies that PM is a prime submodule of
KM.
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Proof:

Assume that IM <sem L < JM. We have to
show that IM = L. Since M is a multiplication
module, then L = TM for some ideal T of R.
Now IM <sem TM < JM, since M is a faithful
and multiplication module and satisfying the
condition (*), so by [11, Proposition (2.10)] |
<sem T <J. But I is an St-closed ideal in J, then
| = T. This implies that IM = TM = L, hence
IM is an St-closed submodule in JM.

Proposition (2.5):

Let M be a finitely generated, faithful and
multiplication module. If IM is an St-closed
submodule in JM, then 1 is an St-closed ideal
inJ.

Proof:

Assume that [ <eem E < J, then by [11,
Proposition (2.11)] IM <gem EM < JM. Since
IM is St-closed in JM, then IM = EM. This
implies that | = E, [5, Theorem (3.1)]. Thus I is
an St-closed submodule in J.

From Proposition (2.4) and Proposition (2.5)
we get the following theorem.

Theorem (2.6): Let M be a finitely generated,
faithful and multiplication module such that M
satisfies the condition (*), then | is an St-
closed ideal in J if and only if IM is an St-
closed submodule in JM.

Corollary (2.7):

Let M be a finitely generated, faithful and
multiplication R-module, and let N be a
submodule of M. If M satisfies the condition
(*), then the following statements are
equivalent:

1. N is an St-closed submodule in M.

2. (NgM) is an St-closed ideal in R.

3. N =IM for some St-closed ideal I in R.

Proof:

(1) = (2) Assume that N is an St-closed
submodule in M. Since M is a multiplication
module, then N = (NgM) M [5]. Put (NgM) =
I, so we get IM is an St-closed submodule in
M. By Theorem (2.6), | is an St-closed ideal in
R.

(2) = (3) Since M is a multiplication module,
then N = (NyM) M [5], and we are done.

(3) = (1) Since I is an St-closed ideal in R, so
by Theorem (2.6), IM = N is an St-closed
submodule in RM = M.
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S3:Chain condition
submodules
In this section we study the chain condition
on St-closed submodules, we give some results
and examples about this concept. We start by
the following definitions.

Definition (3.1):

An R-module M is said to have the
ascending chain condition of St-closed
submodules (briefly ACC on St-closed
submodules), if every ascending chain
A1 € Ax € ... of St-closed submodules in M
is finite. That is there exists k € Z+ such that
An = Ak foralln>k.

Definition (3.2):

An R-module M is said to have the
descending chain condition of St-closed
submodules (briefly DCC on St-closed
submodules), if every descending chain Ay 2
Az 2 .... of St-closed submodules in M is
finite. That is there exists k € Z. such that
An = Ax, for alln > k.

on St-closed

Examples and Remarks (3.3):

1) Every Noetherian (respectively Artinian)
module satisfies ACC (DCC) on St-closed
submodules.

2) Every uniform modules satisfies ACC on
St-closed submodules. In fact in a uniform
module, the only St-closed submodules are
only M and sometime (0).

3) If M satisfies ACC on closed submodules,

then M satisfies ACC on St-closed
submodules.

Proof:
let A1 € A2 C .... be an ascending chain

of St-closed submodules of M. Since every
St-closed submodule is closed submodule,
then Ai is a closed submodule Vi=1, 2,... .
By assumption M is satisfies ACC on closed
submodule, so that 3 k € Z+ such that A, = Ax
V n > k. That is M satisfies ACC on St-closed
submodules.

Proposition (3.4):

Let M be a finitely generated, faithful and
multiplication R-module. Assume that M
satisfies the condition (*), then M satisfies
ACC on St-closed submodules, if and only if
R satisfies ACC on St-closed ideals.
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Proof:

=): Let J1 € J, € ... be an ascending chain of
St-closed ideals in R. Since J; is an St-closed
ideal in R, then by Theorem (2.6), Ji M is an
St-closed submodule in M Vi =1, 2,.. . Note
that J1 M € Jo M € ... be an ascending chain
of St-closed submodules in M. But M satisfies
ACC on St-closed submodules, so 3 k € Z+
such that Jy M = Jhs MV n > k. But M is a
finitely generated, faithful and multiplication
module, then Jx = Jn» V n > k [5, Theorem
(3.1)]. Therefore R satisfies ACC on St-closed
ideals.

<) Let A1 € A2 C ... be an ascending chain
of St-closed submodules in M. Since M is a
multiplication module, then A; = Ji M for some
ideal Jijof RVi=1,2,....1Itis clear that J1 M
c Jo M c ..., since Aj is an St-closed
submodule in MV i=1,2,...and Mis a
finitely generated, faithful and multiplication
module and satisfying the condition (*), so by
Theorem (2.6), Ji is an St-closed ideal in R Vi
1,2,... . By [5, Theorem (3.1)],J1 € J. € ...,
but R satisfies ACC on St-closed ideals,
therefore there exists ke Z+ such that J, = Jk V
n >k, so that J, M = Jx M, for each n > k, thus
An = AcV n > k. That is M satisfies ACC on
St-closed submodules.

Proposition (3.5):

Let M be a chained R-module, and let A be
an St-closed submodule of M. If M satisfies
ACC on St-closed submodules, then A
satisfies ACC on St-closed submodules.

Proof:

Assume that M satisfies ACC on St-closed
submodules and A1 € Az € ..., be ascending
chain of St-closed submodules of A. Since A
is an St-closed submodule of M, and M is a
chained module, so by Corollary (1.6), Ai is an
St-closed submodule of M. Hence A1 € Az ©
..., be ascending chain of St-closed
submodules of M. By assumption there exists
k € Z+ such that An = Ak V n >k, and we are
done.

Proposition (3.6):

Let M be an R-module, and let N be a
submodule of M such that N € rad(M) N H,
where H is any St-closed submodule in M. If%

satisfies ACC on St-closed submodules, then
M is satisfies ACC on St-closed submodules.




Proof:

Let A1 € A2 € ... be an ascending chain of
St-closed submodules in M. Since A; is an
St-closed submodule in M, and by assumption
N € rad(M) N Aj, foreachi;i=1, 2, ... so by

Corollary (1.22), we get 2 s an St-closed

N
.M ..
submodule in 5 foreachi;i= 1,2, ... . Hence

A _ A . .
Fl c FZ C ... be ascending chain of St-closed

submodules in % Since % is satisfied ACC on
St-closed submodules, so there exists k € Z+
such that % = % V n > k. So that Ay = Ax and
we get the result.

Proposition (3.7):

Let M = M1 @ M be a fully essential
R-module, where M1 and M2 are submodules.
If M satisfies ACC on St-closed submodules,
then M1 (or M) satisfies ACC on nonzero
St-closed submodules, provided that ann M1 +
ann M = R.

Proof:

Let A1 € A2 € ..., be ascending chain of
nonzero St-closed submodules of Ms. If M2 is
equal to zero then M = My, and this implies
that M satisfies ACC on nonzero St-closed
submodule. Otherwise, since Ai is a nonzero
St-closed submodule in Mz, and M is an
St-closed submodule in M2, So by Proposition
(1.18), Ai & M is an St-closed submodule in
M Vi = 1,2,... . Since M satisfies ACC on
St-closed submodules, then there exists k € Z+
such that An @ M2 = Ak @ M2 V n > k. Thus
An = A,V n > k. Similarity for Mo.

The converse of Proposition (3.7) is true
when every closed submodule of M is fully
invariant as the following proposition shows.

Proposition (3.8):
Let M = M1 @ M> be an R-module, where
M and M are St-closed submodules in M. If

M; satisfies ACC on nonzero St-closed
submodules, for each i; i = 1, 2. Then M
satisfies ACC on nonzero St-closed

submodules, provided that every St-closed
submodule of M is a fully invariant.

Proof:

Assume that A1 € Az C ... is an ascending
chain of nonzero St-closed submodules in M,
and let i : M — M; be the projection maps for
each j € J where J = 1, 2, ... . We claim that
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Aj = (Aj N M1) @ (Aj N My). To verify that, let
X € Aj then x =m1 @ mg, where m; € Mz and
m2 € Ma. Since A is an St-closed submodule
of M for each j € J, and by our assumption, A
is a fully invariant which implies that
mi(X) = my € Aj N Mz and m2(X) = mz2 € Aj N
Mz. So x € (Aj N M1) @ (Aj N Mz). Thus Aj &
(Aj N M) ® (Aj N My). But (Aj N M1) @ (A
N M2) € Aj, therefore Aj = (Aj N M1) @ (Aj N
Mz). Note that A; and M; are St-closed
submodule in M, so by Proposition (1.14), A;
N M; is an St-closed submodule in M. Since A
N Mj < Mj < M, then by Proposition (1.15), Aj
N M; is an St-closed submodules in M; for
eachi=1,2andj=1, 2, .... We can easily
show that (Aj N M) # (0) for each j = 1,2,...
and i = 1,2 . In fact if Aj N M; = (0) for each
i=1,2andj=1,2, ..., then by using Aj = (Aj
N M) @ (Aj N M2), we get Aj = (0), which is
contradicts with our assumption. That is
Aj N M; are nonzero St-closed submodules in
M for all i, j. We have the following ascending
chain of St-closed submodules in Mi, (A1 N
M) € (AN M) S ..,Vvi=1 2 But M
satisfies ACC on nonzero St-closed
submodules, then for each i = 1, 2, there exists
Ki € Z+ such that An N Mi = Aki N M V n > Kki.
Let k = max{ki: , k2}. So An = (An N M31) &
(An N M) = (A N M1) @ (Ax N M2) = A for
each n > k. Thus M satisfies ACC on nonzero
St-closed submodules.

Remark (3.9):

We can generalize Proposition (3.8) for
finite index | of the direct sum of
R-modules.
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