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Abstract

This paper describes a three species food web model with linear functional response and
incidence disease. This model consisting of a prey, intermediate predator and top predator where
harvesting of top predator species and SIS disease spread in prey are taken into consideration. The
stability analysis of all possible equilibrium points are carried out. We discussed the effect both of
harvest and disease on the stability of this model. Finally, we used the numerical simulations to
verify the analytical results.

Keywords: SIS epidemics disease, prey-Predator model, Chain of food, Harvest management;

stability.

Introduction Mathematical Model

Mathematics is one way to explain many of We consider the following system as a
the ideas and concepts in the sciences. In the model simulating a tritophic level food chain.
field of food webs play a very important role The dynamics of three species food chain
in ecology, a lot of theoretical studies were model with linear type of function response is
carried out since the beginning of last century governed by the following differential
to explain the interaction between the equation, where N(T) is the population
ecological communities. One particular study density of the lowest trophic level species
describes the interaction between one (prey) at time T, there is SIS (Susceptible-
population (prey) and the other (predator) Infected-Susceptible) epidemic disease spread
living in a closed environment with the three among the prey population and it transmitted
populations striving for survival, for example between the prey individuals by contact,
see [1-6]. On the other hand densely populated according to linear incidence rate with
areas are a good incubator for the spread of infection rate constant h; >0. The infected

infectious diseases. Therefore, there s
increasing opportunity for the spread of
diseases among the communities interacting
with each other [7-18]. There are numerous
studies on the effects of harvesting on
population growth. In the context of predator-

prey can be recovered and become susceptible
again with recovery rate constant hs>0.
Therefore, the total prey population is divided
into two classes: susceptible individuals that is
denoted by S(T), and infected individuals that

prey interaction, some studies that treat the is denoted by I(T). Hence at any time T the
populations  being  harvested as a total prey population is N(T)=S(T)+I(T).
homogeneous resource include those [19-26]. X(T) is the population density of the middle

In this paper, we proposed and analyzed a
three species food web model in which the
prey follows the susceptible-infected-
susceptible cycle and the top predator is

trophic level species (intermediate predator) at
time T and Y(T) is the population density of

highest trophic level species (top predator) at

harvested. In this model, we used linear form time T

as a functional response and disease incidence as _ Sl —hy(S+1)=hy I —hy X]+hs1

for describing the transition of diseases. To be ‘g

followed by a study on the stability of the — =1(h3S—h¢X —hs —hy)

equilibrium points. Next, we discuss the Z;f( . (1)
nature of the solutions and finally the = = X(hg —hoX + hyoS + hyyI —hyyY)
numerical simulations to support the model. ng/

= Y[h13 —hy Y + hys X - qE]
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It is assumed that, all the model parameters
are positive values. The prey N(T) grows with

intrinsic growth rate #; and carrying capacity

hhy' in  absence of predation. The
intermediate predator grows logistically with
intrinsic growth rate hg and carrying
capacity iighy', also the top predator grows
logistically with intrinsic growth rate %, and
carrying capacity hy3hys. The predator X
consumes the prey S and I with maximum
attack rates h,and h, respectively, while
predator Y preys upon X according to
maximum attack rate hy,. The parameters
hio , hy; and hy5 are conversion rates of prey

to predator for species X and Y respectively,

The parameter &, is disease induced mortality
rate for species I. Finally, 4>0 is the catch

ability co-efficient of the predator, E >0 is the
harvesting effort and gEY is the catch-rate
function based on the CPUE (catch-per-unit-
effort) hypothesis.

The Jacobian matrix of system (1) is
] = (ﬁ,-]-)e R4 with entries

P11 =hy —2h,S—hyl —h3] —h, X ; f153=—h,S;
Bio=hs —h,S=h3S; P14 =0; fr1 =h3l;

Pra =h3S—heX —hs —hz; foz =—hel ;

Pos =05 P31 =hioX; B3y =h1 X Py = —hpX;
Paz =hg —2hgX + hyoS+hy I —hyY ;5

Ba1 =P =0; Paz =h5Y;

Pas =Mz —2h14Y + hi5X —gE

By introducing the total environment
population P(T)=S(T)+ I(T)+ X(T)+ Y(T),
summing the equation (1) and bounding the
right-hand from above, following the steps of
[27], boundedness of the solution trajectories
of this model is established. In particular,

lim (S(T)+1(T) <

T—o )

lim X(T)< 8 ,
T—w h9

lim Y(T) <12 and 1im P(T) < ¢f 1210 *T2lts
T—o hyy T—w hyhg
where 0 < ¢ <min{h, , gE}

In what follows, the system's equilibria are E,
and we denote by J, and ,Bi[;‘] the Jacobian
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and its entries evaluated at E,,i=1234,

j=1234, k=01,...11.

Analysis of System

Clearly the origin equilibrium point
E, =(0,0,0,0) is a trivial solution of the
system (1), and the Jacobian matrix at E,
becomes a triangular matrix, then the
eigenvalues are A =p, >0, A =pg >0
AT = _(h5+1h,)<0 and A% =n,, —gE . Yield,
E, is a saddle point (unstable). By the same
way, the Jacobian matrix at the equilibrium
point  E; =(5,,0,00) where S, =hh;"
becomes a triangular matrix, and the
eigenvalues are

ﬂ,[sl] =-hy <0, 1[11] = h3S; —(hs +h7),
lg%] = h8 + thSl >0 and i[;] = I’l]g —E]E .

Therefore the equilibrium point E; is

always saddle point (unstable). The
equilibrium  point E, =(0,0,X,,0) where

x, =hghy' has the following characteristic
equation:

P(A2Y) = ((y — 1y Xy ) - A2 g — A2)
(13 + 1y5X, —qE)—/l[f])
% (- (heX, + hs +11,) - 22V)=0

So, the eigenvalues are 421 = (1 X, + 75 +1,)<0

1!92] = hl _h4X2,/1[§] = _hg < 0 and
ﬂ’[\%] =hy3 +h5X; —gE.

Therefore the equilibrium point E, is
locally asymptotically stable if and only if
hhy' < X, <(gE—hyz)hs and hy3 <gE hold.
Otherwise, E, is saddle point (unstable). The
equilibrium point is E; =(0,0,0,Y;) where
Y, =(hy3 —gE)i;; and the necessary and
sufficient condition for existence E; is
hi5 > gE, the eigenvalues are

1[3] = hg —h12Y3
Bl =py >0,4B) = ~(hs +1,) <0, and
/I[f:)] = (I3 —qE)<0.
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Therefore the equilibrium point E; is
saddle point (unstable). The equilibrium point
E, =(S4,1,,0,0) where S, =(hs+h,)h;' and
o Salln —1yS,)
4=

(hySy +17)
sufficient condition for existence E,
hhyt > S, , and the characteristic equation is:

, the necessary and

is

P(lm): ((hs +hoSy +hyyly) - /1[;(1] X(hn —qE)- /1[;1])

[ =y =258y = (hy +13)14 )2 -0
+h314(h254 +h7)

So, the eigenvalues are
A =hg + 1Sy + Iy >0, 2 =hy5 —gE and
A A8 = a1y (1ySy + 1) > 0

A Ay —on,S, koI, byl

Therefore the equilibrium point E, is
saddle point (unstable). Now, we turn to
the investigation of equilibria
E. =(Si, I, Xk, Vi), k=56,...,11 of system
(1). The equilibrium points in which simple
prey-predator model namely Es =(Ss,0,X5,0)
and E, =(0,0,X,,Y,) where

5= (/g —hyhg) L X5 = (hyf19 + hahg) with
(hyh1o +h3ho ) (hyh1o +Ii2ho )
the feasibility conditions h4hg <hyhy, and
X, = (lghyg +hipgE = hyohys)
. =
(hohyy —H1ohys)
(hs =9 X7)
12
hghyy +yogE > hyphys and X, < hghg'

Y, = with feasibility conditions

respectively. The equilibrium point
E, =(56,0,0,Ys) where S,=hh," and
Y, =(hy3 —gE)hi;  with  the  feasibility

condition k3 >gE. Also, we have Eco-

Epidemiological model with equilibrium point

EB = (Sg,Is,XS ,O) Where

(h358 _h5 _h7)
he

(3hg = heh1g)Ss = (ghs + ho (5 + 7))

hehyy
while Sg represents a positive root of the
equation A;S% +A,S+A; =0 where

XSZ

7
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| hahghyy + (h + k3 Nit3ho —hghyg)
Ay =Iyhghyy +(hy +hy [hghs + ho (hs + 1y )]

+ h4h11(h5 +hy )+ hs (h3h9 - h6h10) >0
A3 = _h5 [h6h8 + hg (h5 + h7 )] < 0

Obviously, Eg exists uniquely in the
interior of the first octant of SIX—space if and

only if hshg >hghyg and
S >max{(h5 +h7),h6h8 +h9(h5 +h7)}.
hs (h3h9 - h6h10)

The equilibrium point Eq =(Sg,14,0,Ys)
where components

(h5 +h7)

hs

— (hl _h259 )59 and

S g =
’ ’ (h7 +h,Sg )

1@:@ with feasibility conditions
14

Sy <Z—1 and h,3 >gE. We have food chain
2

model with equilibrium point

ElO = (Slo ,0, XlO’Ylo) Where
[h1h9h14 +hyhiphys + h1h12h15}
—hyhghyy —hyhyipqE
[h2h9h14 +hyhighyy +h2h12h15] '
X = (hl _hZSIO) Yoo = (hls + 15X —qE)
10="—"—7— ,110=
hy hig
with feasibility conditions
hyhghyy + hyhiogE < hihghyy +hyhyphys + hyhighys,
S0 < hlhil
and hy; +hy5Xq0 >gE . Finally, we have the

coexistence equilibrium point
Ey; =(S11,111,X41, Y1) With components

(115X11 + hy3 = qE)
hs

SlO =

(h6X11 +hs + h7)
hy

_ Sy1(hy = hySyy —hyXyy)

(hySyy +heXqq +17)

Sll =

/YH:

11

7

while X;; represents a positive root of the
following second order polynomial equation
A X? + A, X + Ay =0 where



Ay =hg [h6h10h14 —h3hghyy = hyphys ](hz —hy )
+hehyihyy (hzhé —hsh, )

A, = (h2h5 +hyh; +h3h; )[hehlohm —h3hghyy - h12h15]
+hghyihyy [h1h3 —2h, (hs +h, )]
+ [h5h6h10h14 +hghyhyghyy —hghyyhys + hehlqu]
X (hz —h )_ hahyhyihyy (h5 +h; )

Ay = [h3hsh14 +hshyghy +hyhyghyy —hyphys + hquE]
x(hohs + hyhy +hghy )+ hyhohghyy (B, —hs)
+ (hs +h; )[h1h3 —h, (h5 +h; )]

Therefore, straight forward computation
shows that E,; exists uniquely in the int. ®? if
and only if his +hy5Xq1 > gE,
hy; > h,S4, +hyXy; and one set the following
conditions holds

A >0 and Az <0
or
A1 <0 and Az >0

Theorem (1):

The equilibrium point E; is locally
asymptotically stable in®R? if and only if:

h13 +h15X5 <qE, h355 <h6X5 +h5 +h7

2hg < min{h255 +3h9 X5, [h4h10 +3ha ]x5} ----- (2)

Proof:
The Jacobian matrix of the system (1) at Es is

given by:

hs —h,Ss5
h3S5 —heXs
0 0 0
J5= [ —hs —hy
hyoXs hy1Xs5 (2h8 —3h9X5) —hyp X5
hi5Xs5 j
0 0 0
his —qE

So, the characteristic equation of J; can be
written by

P - (B + (1S5 — 21 + 3 X5 )2
+55 (h4h10X5 —hy (Zhs —3ho X5 ))
x (h355 —heXs5 —hs —h7)_/1[15])
x (h13 +h15X5 _qE)_l[);])

from which, we obtain that:

A,EVS] = h3S5 _h6X5 _h5 _h7/i[$] = hl3 +h15X5 _qE

AV A — (1,54 —2hg +3heX5),
ﬂ’!:SS] Xﬂ,[;] - 55 [h4h10X5 —h2(2h8 —3h9X5 )]
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Here A1, 750 A% and A°! denote to the
eigenvalues in the S—direction, I-direction,
X —direction and Y —direction, respectively.
So, it is easy to verify that, all the eigenvalues
have negative real parts if and only if the
condition (2) holds. Therefore, the equilibrium
point E5 is locally asymptotically stable in R .

Theorem (2):
The equilibrium point E; is locally

asymptotically stable in®? if and only if:

hg +h19Se < h12Ye

h3Se < (hs +hy)

Proof:
The Jacobian matrix of the system (1) at
E, is given by:

hs —h3Se

iy ( e ] IS, 0

h3S6

0 0 0
J6 = (_ h5 _h7j

0 0 0

[ —h12Ys
0 0 hisYe ~ (I3 —gE)

So, the characteristic equation of ], can be
written by

A= ((13Sg — s — 1y )= AN (15 —gE)- A9
(g + 1S — Iy Yg )~ A8 iy — A1)

P

X

from which, we obtain that;

1[56] =-h; <0, /1[16] = (h3S6 —hs —hy )/
A = (g + 111986 12 ), A5 = ~(s —qE) <0

Here 1&6],/1[16],2[@ and z@?l denote to the

eigenvalues in the S—direction, I-—direction,
X —direction and Y —direction, respectively.
So, it is easy to verify that, all the eigenvalues
have negative real parts if and only if the
condition (3) holds. Therefore, the equilibrium

point Eq is locally asymptotically stable inR* .

Theorem (3):

The equilibrium pointE, is locally
asymptotically stable in®?* if and only if
hht <X,
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Proof:

The Jacobian matrix of the system (1) at
E, is given by:

h
(_ n XJ s 0 0
_ he X
J7 = 0 B (-i- hs + hJ 0 0
h10X7 hy1X7 —hyX; —hpX;
0 0 hisY;  —hyY;

So, the characteristic equation of J, can be
written by

Vol.18 (3), September, 2015, pp.131-140

P(A7Y)= 1y =1y X, )= A0 = (1 X5 + hg + 1, )= A7)

X ((/1[7] )2 + (X7 + hig Yy )1[7]]
+ (h9h14 +hyyhs )X7Y7

from which, we obtain that
lg7] = hl - h4X7 ’ /1[17] = _(]’16X7 + h5 + h7 ) < 0
/1[}?] X /1[;] = h9h14 + hlzhls >0

Here AE;],A[I”,/I[;] and /1[;] denote to the

eigenvalues in the S—direction, I-—direction,
X —direction and Y —direction, respectively.
So, it is easy to verify that, all the eigenvalues
have negative real parts if and only if

hhyt < X, holds. Therefore, the equilibrium
point E. is locally asymptotically stable in
ER4

.
Theorem (4):

If the following conditions hold

h13 + h15X8 < L]E ........................................ (48.)
hy <2hySg +h3lg +hyXg (4b)
BoySe <hghoXgy |

Then, the equilibrium point Eg is a locally
asymptotically stable.
Proof:

The Jacobian matrix of the system (1) at Eg
is given by:

hy —2h,Sg
hs —h,S
—hylg —hylg ( 5_h 52 SJ —hySq 0
—I’l4X8 3-8
Jg = hylg 0 ~hglg 0
h10Xs h11 X —hoXg —h12Xs
s + ]
0 0 0
hi5Xs —qE

So, the characteristic equation of Jg can be
written by
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P(i[s])Z (1[51 (113 + 115X —qE)) ith
X[(/l[s])z; +F1(/7~[8])2 +F2(i[8])+ F3} wit

F, = hals(hzss +h3Sg —h5)+h2h918
—hyXg (hl —2h,Sg —hjlg _h4X8)
+hyhySgXs +hehi11sXg

(h3h9 —hghy )(hzss +h3Sg _h5)

Fy =IgXg| = hghyy (hy —21,Sg = (hy + by g —hy X))

+h3hyhy,Sg
hy —2h,Sq _(hz +h3)18
_(h4 +hyg )Xs }
x[g (ly = 2h,Sg = (hy + by g =y Xg)—hyhySg]
+[h3(h1 —2h,54 _(hz +hy )18 _h4X8)_h6h10X8]
xIg(hs —hySg —13Sg )+ hyy XgIg (hoho Xg — h3h,Sg)

Here ifldenote to the eigenvalue in the
Y —direction. The Routh-Hurwitz conditions
require F;, >0Vvi=1,3 and A=FF, -F;>0,
follows from condition (4b) and in addition
the negativity of the other eigenvalues, namely
condition (4a). So, according to Routh-
Hurwitz criterion Eg is locally asymptotically
stable.

Theorem (5):

The equilibrium point Eg is
asymptotically stable in%®? if and only if
(g +h19Se +h1lo iy < Yo

hy < 2hySg +(hy + 3 )l

locally

Proof:
The Jacobian matrix of the system (1) at

E, is given by:

sy A3 BB o
BV A
1o o B o

o o Y Al
where:

1 = by = 21ySg — (1 + 13 )To; B = ~(ySg + )
ﬁl[?,] =—hySg ; ﬂ£91] =h3ly; ﬁz[%] =—hely ;
B =g +11gSg +hyylg — Iy Yo 5

S =hisYy ; B =—(5 —qE)
So, the characteristic equation of J, can be
written by



P(ﬂ[g])z ((hg + hlosg + h1119 - h12Y9 )_ /I[)?])
) (/1[9])2 —(hy = 21,Sg — (hy + 113l ),1[9]
+ 3Ly (1ySo + 1y )
X (— (h13 - qE)_ ﬂ‘[\?])

from which, we obtain that:
/1[}?] =hg +hy9Sq +hy1lg —hypYy ,
/1[1?] = (113 —qE)<0

[9] X 1[9] = h319 (thg + h7)> 0
Here A1, AP0 01 and A1 denote to the

eigenvalues in the S—direction, I-direction,
X —direction and Y —direction, respectively.
So, it is easy to verify that, all the eigenvalues
have negative real parts if and only if the
condition (5) holds. Therefore, the equilibrium

point E, is locally asymptotically stable in R .

Theorem (6):

The equilibrium point E,,

asymptotically stable inR? if and only if

is locally

S1o <(h5 +hy +heXqo)h3'
hg +h19S10 < 2heXq0 +h12Y10

Proof:
The Jacobian matrix of the system (1) at

E,, is given by:

1) 1%3 Ao

0 0 0
J10 [10 %120] [10]  p[10]

By” By Bzl P

o o plo plol

where
[l | = —hzslo, 1[2 I = h5 hZSlO h3510’
ﬂl 0] _ = —h4510 ; ﬁ31 = h10X10 ’ ,332 = h11X10/
/3210] =h3519 —h¢X19 —hs —hy ; ﬂ3 =—h15X19;
/?’3[,10] hg — 2’79X10 +h10510 —hy,Yq0;
0] _

B = msvig ; Y = (i + 15Xy — gE)

So, the characteristic equation of J,, can be
written by

P(ﬂ[w])= (/1[110] (1319 —heX10 —hs5 7 ))

x [(1[101 J o+ B (A1OTF 1y (a0 1—},}

with
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F = —(hs —2hg X109 + 110510 _hlzyl())
+hyS10 +h14Yq0
Ey = hyhy4510Y10 + XlO(h12h15Y10 + h4h10510)

- (hs —2hgX10 +h10510 — h12Y10)
X (hlslo + h14Y10)
Fu=S.Y {(hzhlzhw +hyhyghyy )XlO —h2h14}
3 U170 X(hs =2hoXq0 +h10S10 —h12Y10)

hg —2heX
=hyhigSi0X 10| B2S1o —| , 910]
4'*10~10 10|: 2-10 (+h10510_h12Y10
+ I3 Yq [hzsw — (g — 219X 19 + 1Sy — 1y Yig )]
x[h2510 + 1 Yyg = (g = 2hg X + 130819 =11y Vi )]
hg —2he X
+hhs X0 Yiol hig Yo =1, 910)
127%154*10 10|: 14 10 (_l_ hloslo_hquO
Here Al°ldenote to the eigenvalue in the
I—direction. The Routh-Hurwitz conditions
require F;,>0Vvi=1,3 and A=FF,-F;>0,
follows from condition (6b) and in addition
the negativity of the other eigenvalues, namely

condition (6a). So, according to Routh-
Hurwitz criterion E,, is locally asymptotically

stable.

Theorem (7):

If the following conditions hold

hy < 285817 + (g + 13 )11 + g Xq oo, (7a)

oMoy, hoMoXu (7b)
hg hiylqy

hoh14X11Y41 > h3111(h2511 +h11 X4 +h7) ..(7c)

Then, the equilibrium point E;; is a locally
asymptotically stable.
Proof:
The Jacobian matrix of the system (1) at
E,, isgivenby ], = (ﬂi[}l]) where:
V=hy = 28,8y, = (hy + 13 )111 —hyXyy;
I (h7 +hySyy +heXq1); Bl =~hySyy ;
A =0; g =nslyy 5 ﬂé? =
pL
1_
1_

=—heliy; :3511 = ﬂ31 —hloxn;
ﬁg[,lzl h11X11/ﬁ33 :—h9X11/ﬁ341]=—h12X11?
ﬁz%l El] ﬂ[ll =hy5Y14 ?ﬂzﬁl] =—hy,Yqq -

So, the characteristic equation of J;; can be
written by
P = (A1) 4 (AT 4, (0D
+ By (A)+ F,
with
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F = (ﬂ[“ +ﬂ[11]+ﬂ[11])
_ﬂ[ll pll [11] ﬂll]ﬁ[ll] ’3[11 ﬂzlll] ’3[11[311]
ﬂ[llﬂll] /3[”],6 [11] ﬂ[ll]ﬂ[ll
ﬂl[lll]ﬂ[11ﬂ11]+ﬂ44 ﬂ1121]ﬂ[11 +ﬁ[11],32131ﬂ[11]
ﬂllll]ﬂ[ll]ﬂ[ll ﬁ[ll]ﬂ[llﬂ;ll] ﬂ[ll]ﬂslzlﬁ[ll]

+/J’[11],B[“ﬂ[“]+/311]/3[11]/3[“ +/3[“ﬂ1121]/3£111]
ﬂ[“ﬂzll”ﬂ[“]ﬂﬁa} +,B[“ gl 1]/3:?11]/3
ﬂ[ll]ﬂ[ll ﬂglll]ﬂ[ll ﬂllll]ﬂ[ll]ﬂ[llﬂll]
ﬂll]ﬂ[ll]ﬂ[llﬁll]

A=FFy~Fs = ﬂllll]ﬁ[ll]ﬂ[ll (ﬂ[ll) [3“]
_251111 plL 1]/3[11 [11) 53131 +,B[“ ﬂlél]ﬂ[u]
+/3[11],3[11[3[11] /3[“ (ﬁ[ll]) (ﬂ[ll]) IBL}]

ﬂ[ll]ﬂ[llﬂ[ll]+ﬂ3 1]ﬁ[11]/3[“ /3[11[33 1]ﬁ[11]
ﬂmgﬁm) ﬁ[n](ﬂn])

+ gl sl ”ﬁ[“] +[),[11]ﬂ[u )

AFs —(F, 2 E, (ﬂlll]) ﬂ[ll]ﬁ[ll

ﬂ[ll]ﬂ[ll ﬂllll]ﬂ[ll] ﬂ1111]/3[11]
{ 2/3[11ﬂ11] (ﬂ 11]) (ﬂ[ll]) ]
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(ﬂllll])z [11] [11

[elF| -

—_

n '[),[11] ﬂ[”

1)l ]~

g

[11]l11]

2 MBI gl gl
51[111] ﬂ[ll] 2 ﬂ[ll] ﬂ[al]
(ﬂn])? ( 11])2
124 11]ﬁ[11] 2ﬂzlal]ﬂ [11]
[ [11 )2ﬂ111] [1] ( 1])2ﬂ[11],6’[“
(ﬂ[ll])z ﬂ[“ 11] N ﬂ[ll] ﬂ[ll] ﬂ[ll] ,B[H]
+ﬂ[11]ﬂ[ll]ﬂ[1l]ﬁ[ll] +ﬁ[11],3[11]ﬂ[1l]ﬂ[11]
ﬂ[ll]ﬂ£ 1]ﬁ[11]ﬂ[11]
ﬂ[ll] /;’[“] ,B[“](ﬂ (1], ﬁ[“]
ﬁ[ll] ,6’[“ 11] [11 ﬂ[ll]
+ﬁ[1l]ﬂ[11 11] [11 +,3[1]
,B[ll]ﬂ[ 1] [11],3[11 ’3[1 ]ﬂ 11]
ﬁ[“]/a’[“] [11]ﬂ[11]+,5'[1 ]5[11]
'3[11 ,B[Hﬂn] [11 ,B[H]
ﬂ[ll]ﬂ[ll]ﬂ[ll] ﬁ[ll] _,_ﬂ[ll]
ﬂ1[121] ﬂ£ 1] ﬁ[ll] ﬂ[ll] n ﬂﬁl]
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So, if sl <0; gl pll < g1 gll1]

ﬁ3 1]ﬂ[11] ﬂ“”ﬁ%” /ﬁ3 ﬁ[“] S ﬁllzl 11]
and by using the Routh-Hurwitz condltlons
require  F,>0Vi=1,3,4,A=FF,~F;>0
and (F,F, — F;)F; —(F,?F, >0, which reduces
to conditions (7a)-(7c). So, according to
Routh-Hurwitz  criterion E;; is locally
asymptotically stable.

Numerical Simulations

To study the system (1) numerically let’s
use the cont. line (—) forx, dash line (- -) for
y, dot line(::) for z and dash-dot line(-.-) for

p in the all of the following figures. Now,
consider the following set of parameters

hy =0.8,ly =0.02,h3 =0.7,hy =0.7,h5 = 0.3,
I’l6 = 06, h7 = 018, h8 = 09, I’lg = 003, th = 0 6

hll = 05, h12 = 03, h13 = 07, h14 = 007,
hi5=02,9=0.6,E=05;

With initial point (0.75,0.75,0.75,0.75 ). For

this set of parameter (8), the solution
trajectory of system (1) approaches to the
equilibrium point

E;; =(1.046,1.119,0.42, 6.915) see Fig.(1).
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Papuladons

EDID 12IDD 15IDD 1800

Fig.(1) Time series of the solution trajectory

of system (1) for data given in Eq.(8) which
show that E,; is a locally asymptotically

stable.

If the infection rates constant h;<0.21

then the solution trajectory of system (1)
approaches to the equilibrium  point
E;o =(2.923,0,1.059,8.741) see Fig.(2).

Papulations

600 1200 1500

s e
i] 300

1600

Fig.(2) Time series of the solution trajectory
of system (1) for data given in Eq.(8) with
hy =0.21.

But, when the effect of catch-rate qE is
considered then the solution trajectory of
system (1) approaches to the equilibrium point
E, =(0,0,1.993,2.801) when
g>0.95,E>0.95 see Fig.(3), and approaches
to the equilibrium point
Ey =(0.686,2.783,0,9.714) when
g<0.2,E<0.1 see Fig.(4).
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Fig.(3) Time series of the solution trajectory
of system (1) for data given in Eq.(8)
with g =0.95, E=0.95.
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Fig.(4) Time series of the solution trajectory
of system (1) for data given in Eq.(8) with
q=02,E=0.1.
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Conclusions and Discussion

In this paper, we proposed and analyzed the
combined effect of SIS disease and harvest on
a Food Chain model. The dynamical
behaviour of system (1) has been investigated
locally. In addition to assumed that the top
predator population is harvested under optimal
conditions, we used linear functional response
and incidence rate for the diseases in prey
species. The model included four non-linear
autonomous  differential  equations  that
describe the dynamics of four different
populations namely susceptible prey (S),

infected prey (1), intermediate predator (X )
and top predator (Y). The conditions for

existence and stability for each equilibrium
points are obtained. Similar, numerically
explained that the solution trajectory of
system (1) with parameters given in eq.(8)

Vol.18 (3), September, 2015, pp.131-140
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approaches to the equilibrium point
E;; =(0.891,1.602,0.24,7.428). The system

(1) is solved numerically for varying of
infection rate h; keeping other parameters

fixed as given in Eq.(8), then the solutions
trajectory of system (1) are drawn in Fig.(2), it
is clear that, as the infection rate decreases the
infected individuals started decreases and the
system (1) return to asymptotically stable at
the coexistence equilibrium point in the

Int. R%. However, decreasing h, further, say
h, =0.21, causes losing the stability and then

the solutions trajectory approaches to another
equilibrium point E,,. The same way with

parameters q>0.95;E>0.95, but with
g>0.2;E>0.45 the solutions trajectory
approaches to another equilibrium point E,.
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