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Abstract

This paper is concerned with the existence and uniqueness state vector solution for a coupled of
nonlinear parabolic equations using the Galerkin method when the continuous classical control
vector is given, the existence theorem of a continuous classical optimal control vector with equality
and inequality vector state constraints is proved, the existence and uniqueness solution of the
adjoint equations associated with the state equations is studied. The derivation of the Frcéhet
derivative of the Hamiltonian is obtained. Finally the necessary conditions theorem, so as the
sufficient conditions theorem of optimality of the constrained problem are proved.
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1 Introduction

The optimal control problems play an
important role in the many fileds in life
problems, for examples in robotics [Rubio et al
2011], in an electric power [Aderinto &
Bamigbola 2012], in civil engineering [Amini
& Afshar 2008], in Aeronautics and
Astronautics [Budigono& Wibowo 2007], in
medicine [El hiaet al 2012], in economic
[Boucekkine&  Fabbri  2013], in heat
conduction [Borzabadi et al 2004], in biology
[Agusto & Bamigbola 2007] and many others
fields.

The importance of optimal control
problems  encourage many  researchers
interested to study the optimal control

problems for systems are governed either by
nonlinear ordinary differential equations as in
[Warga, 1972] and in [Orpel 2009] or by linear
partial differential equations as in [Lions 1972]
or are governed by nonlinear partial
differential equations either of an elliptic type
as in [Bors & Walczak 2005] or of a
hyperbolic type as in [Al-Hawasy 2008] or by
a parabolic type as in [Chryssoverghi &
Al-Hawasy 2010], or optimal control problem
is governed by a couple of nonlinear partial
differential equations of elliptic type
[Al-Hawasy & Al-Rawdhanee 2014].

This work is concerned at first with the
existence and uniqueness of the state vector
solution of a couple nonlinear parabolic
differential equations using the Galerkin
method for a given (fixed) continuous classical
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control vector. Second the existence theorem
of a continuous classical optimal control
vector governed by the considered couple of
nonlinear partial differential equation of
parabolic type with equality and inequality
state vector constraints is proved. The
existence and uniqueness solution of the
couple of adjoint vector equations associated
with the considered couple equations of the
state is studied. The Fréchet derivative of the
Hamiltonian of this problem is derived. Finally
the theorems of necessary and sufficient
conditions of optimality of the problem are
proved.

2. Description of the problem

Let I = (0,T), T < o, & c R? be an open
and bounded region with Lipschitz boundary
00, Q=0x1I, =0Qx1. Consider the
following continuous classical optimal control
problem: The state equations are given by the
non linear parabolic equations:

yie —Ay1 +y1 —y2 = il 6y, U, e 1)
Yot —Byz +y2 +y1 = (08,52, Uz), e (2)
V16, t) =0,0NZ (i, 3
y1(%,0) = y2(x), 0N Q o (4)
Y2(2,8) = 0,0NZ o (5)
Y2(,0) = y2(x), 0N Q o, (6)

where y = (y1,¥2) € (C2(Q))? is the state
vector i = (uy,uy) € (L2(Q))? is the classical
control vector and (fy, f2) € (L2(Q))? is a
vector of a given function defined on 2 X R X
U, and Q X R X U, respectively with U; c R
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and U, c R. The controls constraints (the
control set) are i € W, W < (12(Q))”. Where
W = Wy with U c R? is defined by

Wy = € (12(Q)|w € U, ae. in Q},

The cost function is

Go(d) = fQ Jo1(x, t, ¥y, ug)dxdt +

fQ o2 (6, t, Yo, Up)AXAL o, (7a)
The equality and inequality constraints are

G (W) = fQ 911(x, t,y1, 4y )dxdt +

fQ G126, t, Y2, u)dxdt = 0 .o (7b)
G,(W) = fQ 921 (x, t, ¥4, us)dxdt +

fQ G220, t, Y2, ux)dxdt < 0 oo (7¢)

The set of admissible control is
W, = {ii € W|G,(@) = 0,6,(%) <0}

The continuous optimal control problem is
to minimize the cost functional (7a) subject to
the constraints (7b&c), i.e. to find u € W,such
that G, (%) = WQ%GO(W)

LetV =V, xV, =
{13: vE (Hl(Q))Z,vl =v, =0o0n aﬂ},

v = (vq,v,). We denote by (v,v) and [|v]l,
the inner product and the norm in L2((), by
(v,v); and ||v||; the inner product and the
norm in H1(Q), by (#,%) and ||¥]|, the inner
product and the norm in L?(Q) X L*(Q)
by (0,91 = (v, 1)1 + (V2,21 and
171l = llvell; + llv2ll; the inner product and
the norm in V and V* is the dual of V.

The weak form of the problem (1-6) when y €
(H (f2))%is given by

(Y16, v1) + (Vy, Vo) + (v, v1) — (02, v1) =

(f,171), VUL E Ve, (8a)
2,v1) = (71(0),71), oo, (8b)
(¥2e,v2) + (Vy2, Vuy) + (32, v2) +
(1, v2) = (f2,12), VU3 EVy v, (9a)
2,15) = (72(0), 1) oo, (9b)

The following assumptions are necessary to

study the classical optimal control problem:

Assumptions (A): Vi = 1,2, assume that

i) f; is of the Carathéodory type on Q X (R X
R), satisfies the following condition with
respect to y; & u;,i.e. for (x,t) € Q

IfiCot v u)l < mi(x, 0) + cilyi| + &lwl

Whel‘e Vi, Ui € R,Ci, él' > O, ni € LZ(Q,R)

i) f; is satisfied Lipschitz condition with
respect to y;, i.e. for (x,t) € Q
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IfiC t, v w) — fi(x, 6,y u)l < Lily; — yil,
where yi,}_/i,ui ER& Li > 0.

3. The Solution of the State Equations

In this section the existence theorem of a
unique solution of the coupled of nonlinear
partial differential equations of parabolic type
under a suitable assumption is proved when
the control vector is given.

Proposition 3.1 [Chryssovergh, 2003]:
Suppose D be a measurable subset of R? (d =
2,3), f:DxR" — R™ is of Carathéodory
type  satisfies||f (v, x)[| < &) +n@)llx|l*,
for each (v,x) €D XxR" where xE€
LP(D,R™), & € L*(D,R), 1 € Li-«(D,R),a €
[0,p], if p# o, n =0 if p=o0. Then the
functional F(x) = [, f(v,x())dv is
continuous.

Theorem 3.1: (Existence and Uniqueness of
Solution of the State Equations):
With assumptions (A), for each fixed u €

(LZ(Q))Z, the weak form (8-9) of the state

equations has a unique solutiony =
e - 2

1 Y2) Ve = Q1o y2e), ¥ € (LPUV)),

S )2

ye € (L2, V).

Proof:
Let V, €V be the set of continuous and
piecewise affine function in Q. Let

U, = (Vyp, Vypn) With v, €V, Vi =1,2 and
5}11 = (V1 Y2n), V1

YVin = Z?=1 C1j (t)v1j(x)
& Yon = X1 €2 (D)V2;(x)

where c;;(t) is unknown function of t, for
each=1,2,j=12,..,n

The weak forms of the state equations (8-9)
are approximated w.r.t. x using the Galerkin’s
method, hence they become

(Vine: V1) + (Vy1n, Vv1) + Vins 1) —

(2, v1) = (fi(Y1n U1), v1), YV1 €V, .....(129)
2, v1) = (1), Vv, €V e, (12b)
(Vaner V2) + (VY20 V02) + (V2n, v2) +

1, v2) = (L(Van U2), v2), Y v, €V, ...(139)
V2, 12) = (¥, 1,), Vv, EVy e (13b)
where y2 = y2.(x) = y;(x,0) €V, is the

projection of y? € L2(Q), i.e.Vi = 1,2
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o v) =) Vv, eV, &
o =2, < lly? = vill,, vo; € V.

Substituting (10) in (12 a& b) and (11) in
(13 a & b) respectively and setting v; = vy;,
v, = vy, the obtained equations are
equivalent to the following 1% order nonlinear
system of ordinary differential equations with
their initial conditions which has a unique
solution y;,&y,, [Brauer, 1973]:

AC, (D) + DCy() — EC,(t) = by (W c1(D))
AC1(0) = b}
BC,(t) + FC,(t) + HC1(£) = by (V] c2(0))
BC,(0) = b

where, C,(t) = (clj(t)) K G () =

nx

(Cij(t))nxly G, (0) = (Clj(o)) X

nx
b, = (bii)nx1, by = (i ¢, (0), ), vy),

bY = (b)), b=l v;), Vi=12 A=
(i) 1 @j = (v1jv10). E=(e),
eij = (v2j,v11), B = (byj), ...

bij = (v2j,v2), D = (dij)an’

dij = [(Vvy), Vvyi) + (v1),v1)],
F=(fij), o fi = [(Vv2), Vz) +
(vzj,vzi)], and H = (hl-j)
hij = (14, v20).

nxn'’

Now, to show the norm |||, is bounded:
Since y° € (L2(Q))?, then there exists {#3°},
with 9 € ¥, such that #2 — %° strongly in
(L?(£2))? then from the projection theorem and
(12b&13Db) one obtain that y0 — 39

strongly in (L2 (Q))2with |[¥2]lo < by

The norms ||5;"(t)”L°°(I,L2(Q)) and [[¥.(®llg

are bounded: Setting v; = y;, and v, = y,,
in (12a) & (13a) respectively, integrating from
0to T, adding the two obtained equations one
get

[} Gnes it + [} 17 ]12de =
fOT[(fl V1 1), Y1n) + (f2(Van U2), Yan)1dE

Since the 2" term of L.H.S. of (14) is positive,
then using Lemma 1.2 in [Temam, 1977] for
the 1% term of it, taking T = t € [0, T], finally
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applying assumptions(A-i) for the R.H.S. of
(14), i.e.

J &5 dt

< [ [, + lywl?) dxdt +

2 fot Jo c1lynl? dxdt +

I3 Joleulus | + lysa|?)dxdt +

[y o2 + 1y2n1?) dxdt +
zfot Jo c2ly2nl? dxdt +

[5 Jo(Caluz|? + 1yznl?)dxdt,

Since lImillg < by, lluilly < ¢y, Vi=1,2 and
1%, (0) 15 < b, then (15) becomes |13, ()]I5 <

* t =
¢+ cs [ 1FalI3 dt,

where ¢* = b +by + by + é,¢11 + €164,

Cs = 2+ c3 + ¢4, With ¢3 = 2¢4, ¢4 = 2¢,.
Using Belman- Gronwall inequality, to get

1Y, (O3 < c*es = b%(c), V t € [0,T], easily
the following are obtained

15Ol o 207) < B and 115 (Dl <

b, (c).

The norm |3, (Ol .21y is bounded:

Again using the same above steps in (14),
but with t = T, and ||y, (T)I|3 is positive, one
easily obtain that

- T -
1Fnllizq vy = Sy IFllf dt < b3 (c),

(b+bi+bé+élcl+ézC2+C5b1(C))

where bZ(c) = -

The convergence of the solution:
Let {17;1}71:1 be a sequence of subspaces of

V, such that vV & = (v,,v,) € V, there exists a
sequence {#,} with B, = (V1 Van) € V,, V1,
and ¥, — B strongly in V = #, — 3
strongly in (LZ(Q))Z. Then corresponding to
the sequence {17,1}:;1 one obtain a sequence of
approximation problems like (12 a & b) and
(13 a &b), but with ¥ = v, = (v, V,,) for
n=12,.. and yi,, Yan € L*(1, V) ae. in
I,ie

Vine V1in) + (Vyin, V1) + 10 V10) —
V2 V1n) = (FL(V1n U1), V1n),
Vin V1) = (U1, V1), (16b)
& (Yot Van) + (V¥an, Vv2n) + (Von, Van)
+V1n V2n) = (V2 U2), V2n),



(ygnr UZn) = (yg; UZn)a

which has a sequence of solutions {y,}r-,

vv_here 5}_1} = (yln: yZn)-_}
Since ||yn||Lz(Q) and ||y, |lz2; ) are bounded,

then by Alaoglu’s theorem, there exists
a subsequence of {y,}nen, Say again
{FnInensuch that 3, — ¥ weakly in (L (Q))2
and weakly in (L2(I, V))z. In this point, it is
required to show that the norm [|¥yll 2, y+is

bounded, but this will be left here and will be
shown in section 4, so assume it is bounded,
and since

(12R,V))* < (12(R,0))* =
(2R, )2 € (12(R, V)’

Which means the injection of (LZ(R,V))2 in
to (L*(R, )", and of ((LZ(R,Q))*)2 in to
(L2(R,v*))" are continuous, the injection of
(L2(R,V ))2 in to (LZ(Q))2 is compact, on the
other hand from assumptions (A), the Cauchy-
Schwartz inequality, Fourier transform and its
inverse and finally the Parseval theorem, the

compactness theorem [Temam, 1977] can be
applied to get that there exists a subsequence
of {y,} say again {y,} such

that y,, —¥ strongly in (L2 (Q))Z.

Now, multiplying both sides of (16a) and (17a)
by @;(t) € C[0,T], such that
@;(T) =0, Vi = 1,2, taking the integra from 0
to T, finally using integration by parts for the
1% term of each one of the obtained equation,
yield

— Jy O1ns V1)1 (Dt +

fOT[ (Vy1n, V01 91 () + (V1 V1) 1 (2)
—(2n V1)1 (D)]dt =

fOT (i1 wa), vin) @1 (B)dt +

(V2 V1) 91 (0),
& — [} (Van v2n) 9 () dt

+ fOT[ (Vy2n, VV2) @2 (£) +

V2 V2r) 92(8) + V1n Vo) 02 (D) ]dE =
foT(fz (Van, U2), V2n) @2 () dt

+(V2ns V2n) 92(0)

Since Vi = 1,2 the following converges hold
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Vin — V; strongly in V
Vin — V; strongly in L2(Q) }

Vin®; — V;; strongly in L>(1,V)
{ Vin®; — v;¢; strongly in L?(Q)
Yin — ¥; Weakly in L?(Q) & in L*(1,V) and
Y, — ¥{, strongly in L(Q), then

fOT()’m, Vi), (B)dt +

LTV V1) 01 () + (1 1) 91 (8)
~Wan i) @1 (D1t = [ (1, v1) 1 (£)dlt +
fOT[ (Vy1, Vo), (8) +

L)@ (@) — (2, v (D)]dt
Vi Vi) 91(0) = (7, v1) 1 (0)

& [} o Van) @2 (D) dt +

3 L9920, V020) 05(8) + Y2y V2n) 92 (8) +
(V1in Van) @2 ()]dt —

Iy 2 v2)@2(0)dt + [T (Vy,, Vo), () +
(Y2, 12) 02 () + (y1, v2) @2 (B)]dE ........... (22a)
(ygn' Vyn)®2(0) — (}’g: v,)9,(0) (22b)

.......... (21a)
(21b)

On the other hand, let w;, = v;,,p; and w;
vip; then Vi =12, w;, — w; strongly in
L?(Q) and then wy, is measurable w.r.t. (x,t),
using assumption (A-i), then applying
Proposition 1.3, the integral
fQﬁ-(x, t, Vin, U)Wipdxdt is continuous w.r.t.

(Vin, Ui, Wi), but y;, — y;strongly in L2(Q),
thenvi = 1,2

T
[ GG, w01
0

Iy (i u), v i (£)dt (21c)

From (21la,b &c) and (22a&b) then (19) and
(20) become respectively

— [} G v)ei(©)dt + [T (Vyy, Vo )y (6)
+T(3’1:171)§01(t) = 2, v (®)]dt =

Jo iy u), v ()t + (7, v1)p1(0)
(23)
&, (2, v2) @3 (D)t + [ [ (Vy2, Vv2) 02 (t)

+ Y2, v2) @2 (t) + (y1, v2) @2 (B)]dt =

foT(fz V2, U2), 12) @2 ()dt + (v7,v2) 9, (0)
(24)

Casel:

Chooseg; € D[0,T], i.e.,p;(0) = ¢;(T) =0,
Vi = 1,2, substituting in (23) and (24), and
integration by parts for the 15t terms in the
L.H.S. of each one of the obtained equation,
yield
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[ 10 vdea(©)dt + [} [ (Ty1, Vo) (t)
+(¥1' V)91 () — (v2, v1) @1 (O)]dt
= fo (f1(r1, w1, v1) @ (£)dt (25)

T T
f (V26 V2) @2 (t)dt +.f [ (Vyz, Vvo) @, (1)
0 0

+ (Y2, v2) @2 ()
+ (1, v2) e (B)]dt

= fOT(fz(yz,uZ), vz)(pz(t)dt ....................
which give that y; & y,are solutions of (8a)
and (9a) respectively (a.e. on I)

Case2:

Choose ¢; € C[0,T], such that ¢;(T) =
0& ¢;(0) # 0,Vvi = 1,2. Using integration by
parts for 15 term in the L.H.S. of (25) & (26),
subtracting (23) & (24) from the equations
which are obtained from (25) & (26)
respectively, one get

(2, v)1(0) = (3;(0), ;)4 (0),

which give the i. cs. (8b)& (9b) are hold.

(27)

The strong convergence for y,, :
Let a;(Vin, Yin) = (VYin, VYin) + Yins JEin))
28

and
a(Vn, Vn) = a1 V1n Yin) + a2 Von V2n) - (29)

For each i = 1,2 Substituting v; = y;,, and
v, = yonin (12a) and (13a) respectively,
integrating both sides of the above two
obtained equations from 0 to T, then adding
both of them, one has

_>TL ) _>TL d
T Jo(y £ ¥n) t+j0
fo [(fl(yln'ul)ryln) dt

+ fOT(fz(J’Zn' Uz), Yan) dt

Also, the same above steps are repeated but
with substituting v; = y; and v, =y, in (8a)
and (9a) respectively, to get

(TG0 ) dt + [ a@,3)dt =
fOT[(f1 U, y1) + (272, u2), y2)]1dt

T
a(j}n: yn)dt =

Again, using Lemma 1.2 in [Temam, 1977],
the 15¢ terms in the L.H.S. of (30a&b), yield
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- - T > o
%”yn(T)”% - %”yn(o)”(z) + fO a()’n: yn)dt
T
= fo (f1(V1n u1), Y1n)dt
T
+ fo (f2(V2n u2), Y2n)dt
I - )13 + [

0

fOT[(fl v w),y1) + (f2(y2, u2), ¥2)] dt

T
a(y,y)dt =

Since

Ny () = y(DIIF = 3 (0) = y(O) I +
fOT a()_;n - 5’)')—;71 - )_;) dt

= (32a) — (32b) — (32¢) (32)

where

(328)= 7, (DII3 = 215, (0113

+ [, a(Fn (), 7,(0)dt

(32b)= 1(3,(T), ¥(T)) — 1(.(0),5(0)) +
[} a(5.(6), 5(®)) dt, and

(320)= 2(¥(T), yn(T) — (1)) —

15(0), 5,(0) — y(0)) +
INCICIORAGESI0)

Since 3 = ¥,(0), & y° = ¥(0), then
¥,(0) — ¥(0) strongly in(L? (Q))2 } (33a)
Y.(T) — y(T)strongly in(L? (Q))2

(¥(0),%,(0) = 5(0)) - 0}
.................. 33b
(F(T), Ju(T) = H(T)) = 0 (330)
13,(0) = (0115 = 0}
and 15, (T) = F(D)Z > 0 (33c)
But ¥, — ¥ weakly in (L2, V))Z, then
[} G(F©), Fa(t) = F(©))dt = 0. (33d)

Since the integral fOT(ﬁ(yin,ui),yin)dt is
continuous w.rt. y; & u; vi=1,2 and y,
— ¥, strongly in (L? (Q))Z, one get that

T
fo [(f1an w1), Y1) +

(fa(Van u2), y2n)l dt — fOT[(f1(3’1:u1)JY1) +
(fZ(yZ'UZ)' yZ)]dt

Now, when n — oo in both sides of (32), one

have the following results:

(1)The first two terms in the L.H.S. of (32) are
tending to zero (from 33c)

(2) from (31a), Eq.(32a)=



f:[(fl(hn: U1), y1n) + (f2(V2n U2), yan)l dt
- fOT[(f1(J’1:u1):3’1) + (f2(y2, u2), y2)] dt
(3) Eq.(32b) - L.HS. of (31b)

fOT[(f1()’1'u1)')’1) + (2(y2, u2), y2)] dt

(4) The 15¢ two terms in (32c) are tending to
zero (from (33b)), and the last one term also
is tended to zero (from (33d)).

Now, substituting these results in (32) with n
tends to oo, gives

T\ > - T - - > -
Jo I = yliEdt = [; a(n — 3,9 — Y)dt
-0
= ¥, — ¥ strongly in (L(I, V))z.

Uniqueness of the Solution:

Let y = (y1,¥2) andy = (7, ¥,) are two
solutions of the weak form (8a-9a), i.e. y; and
y, are satisfied the weak form (8a), subtracting
each equation from the other and then setting
V1 =Yy — }_/1, y|EIdS to
(V1 =Yooy —_3_’1) + ly1 —_3_’1”% =
(fivu) — 1T, W), y1 — Y1)

The same thing, for y, and ¥,, one have that
(2 = ¥2)e V2 — E’z) + lyz — 322”% =
(22 uz) — (72, u2), y2 — ¥2)

Adding the above two equations, since the 2™4
term of the L.H.S. of the obtained equation is
positive, using Lemma 1.2 in ref. [Temam,
1977] for the remained 1%tin L.H.S,,
integrating both sides from 0 to ¢, applying the
Lipshctiz property on the R.H.S., and finally
the Bellamn-Gronwal inequality, gives

IG-»H©|; =0 veer

Now, repeating the above steps but with
keeping the 2™4term of the L.H.S. and
integrating from 0 to T, using the initial

condition, one have [ ||37—32/||idt <
T - =22

Lfo ||y—y||0dt <0

i ||:)7_}_]||L2(1,V) =0 :>5} :)_}

Lemma 3.1:
(@) In addition to assumptions (A), if y and

y + @ are the states vectors corresponding to
the controls vectors i € (L2(Q))? and u +
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Bu€ (@)% then Y]] mp, zqey) <

M|[6u]l,,
18,2, <
M||sull,
(b) In addition to assumptions (A), the
operator U — yy from (L2(Q))? into

(L™ (I, L2(Q))) 2 or in to (L2(1,V))? or in to
(L?(Q))? is continuous.

MG, & [y, <

Proof:
(@ Letd = (uy,uy),U = (U, ) € (L2(Q))?
then by theorem 3.1, there exist their
corresponding states solutions
y = (y1,¥2), ¥ = (71, 7,), Which are satisfied
the weak forms (8 a& b) and (9 a& b)
respectively, setting &y; =y, —y., 0y, =
Vo= Y2 Oup =U; —u; & Suy = Up; — uy,
once get
(6y11,v1) + (V8yy, V) + (81, v1) —
(6y2,v1) = (i(y1 + 8y, up + 6uy),vp)
—(f1i(y1,uy), v1) (349)
& (6Y2t,v2) + (V8y3, Vvy) + (8y2, v2) +
(6y1,v2) = (f2(y2 + 8y2, uz + 6uy), v3)
—(f2(y2,u2),v;) (34b)
Substituting v; = 6y, in (34a) and v, = Jy,
in (34b), adding the two equations, yields
—s 2 —s,2
sallsyll, + [lovll, =
(fi(1 + 6y us + 8uy) — fi(yy,ur), 6y1 +

(f2(y2 + 82, up + Suy) — fo(y2,uz), 6y2)
................................ (34c)

The 2™ term of L.H.S. is positive, using
Lemma 1.2 in the. ref. [Temam, 1977] for the
remainder term, integrating from 0 to t, using
the Lipshctiz property for the terms in the
R.H.S., one get,vt € [0, T]

— 2
sy @l <
2 [ [ [La18y2 12 + Ly16w, |18y, [Jdxdt +
2 fot Jo[L218y21? + L;|6u,| |8y, []dxdt +

t T
< 2L, f 16y, 112 dt + I, j 16u,lIZ de +
0 0

Ly [}118y: 113 dt + 2L [ 116y,113 dt +
L, J, 18u,l13 dt + L, [, 18y, 13 dt

— 2 e =2 o~ At—n2
= [lsy®|l; < 2Li|[sul|, + L; [y ||8v ], dt
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Where Zl = Zl + Zz, Zz = Z(Ll + Lz) + Zl
The Belman-Gronwall inequality, gives

|85 Oll, < M?(|8l| , where M2 = L, e
= [[sy@ll, < M|6ull , ¢ € [0,7]
= ||@||Lw(I’L2m)) < M||51,7||Q, which gives

1691, o, < M50 . M? = B2 = TI2

Using the same above steps in (34c) but with
t=T,lie.

2 2
15yl +2 f; 18yll, de

< LSl + L. 55 =
||6y||L2(1,V) = M||6U||Q,

where M? = M? = (L, + L,M?)/2

(b) The Lipschitz continuous of u — y easily
obtained using the results in (a).

4. Existence of a Classical Optimal Control

In this section the existence theorem of a
continuous classical optimal control vector
satisfying the equality and inequality state
constraints is studied. Therefor the following
assumption and lemma are needed.

Assumptions (B): Consider g;; (for [ = 0,1,2
and i= 1,2) is of Carathéodory type on Q x
(R X R), and satisfies the following condition
|gu (et yo ud| < (e t) + i (v)* +
cliz(u)?, My € L1(Q).
Lemma 4.1:

With assumptions (B) the functional % —
G, (), for each [ = 0,1,2 ; defined on L?(Q) is
continuous.

Proof:

Using assumption (B) and Proposition 3.1,
the  integral fQ gu(x, t,y;,u) dxdt  is
continuous on L?(Q), Vi= 1,2, VI=0,1,2
hence G, (1)
is continuous on L2(Q), VI = 0,1,2.

Lemma 4.2 : [Chryssoverghi 2003]
Let g: Q x R2 — R is of Carathéodory
type

on Q x (R x R) and satisfies:

where n(x,t) € [1(Q,R), ¢ = 0 and ¢’ > 0.
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Then ng(x, t,y,u)dx is continuous on
L?(Q,R?), withu € U, U c R is compact.

Theorem 4.1:

If U in the set of controls Wy = Wy x W, is
convex and compact, WA + @, the functions
fi, f> with n; € L*(Q), Vi= 1,2, have the
form

file, 6, y1,w) = fia(x t,y1) + fizo(x, Dy
206 6,y2,u2) = f21(x,6,52) + f22(x, Du,
Where  |fi1(x, t,y)| <mi(x,0) + ¢ilyil &
|ﬁ-2(x, t)l < ki! With ki!Ci = 0, Vi = 1,2 91i
is independent of u;, go; and g,; are convex
with respect to u; for fixed (x,t,y;). Then
there exists a classical optimal control.

Proof:

From the assumptions on U; € R Vi = 1,2
and the Egorov's theorem, once get that W, x
W, is weakly compact. Since V_I/A #* @, then
there exists % € W, such that G,(i) =
0,G,() <0 and there exists a minimum
sequence {z,} with i, € W,, vk, such that
A Go () = ﬁei;l—vaGO(ﬁ). Since %, € W,,Vk
but W is weakly compact, there exists a
subsequence of {u,} say again {u,} which
converges weakly to some point i in W, ie.
i, — U weakly in (LZ(Q))2 and ||zgllp <
¢,Vk. From theorem 3.1 the state equations
has a unique solution y, = yy, for each
control iy, and the norms [|[Yill e 12(qy);
Vil 2 gy and ||37k||Lz(,,V) are bounded, then by
Alaoglu’s theorem there exists a subsequence
of {y,} say again {y,} which converges
weakly to some point y w.r.t the above norm,
ie. ,

Ve —y weakly in (LW(I,LZ(Q))) ,in

(L2(Q)) and in (12(1,1))".

To show that the norm ||Vl 2y IS
bounded, the weak forms (12a) & (13a) can
rewritten in the forms

Vike 1) = —=(Vy1, Vor) — V1p v1) +

Y2k, V1) + (fi(V1k Uak), V1)

& (Yakt: V2) = —(Vyak, V3) — (Vor, v2) —
(ylk' UZ) + (fZ(ka'UZk)J UZ)

Adding the above two equations, then
integrating both sides from 0 to T, taking the



absolute value and finally using the Cauchy
Schwarz inequality, yields

|f0T<)7kt» 17)dt|

< ||V}’1k||Q||VV1”Q + ||}’1k||Q||U1”Q
Hlyzrellgllvellg +(lIn1llg + callyirllo +
Eilluslivallg + IVy2illo Vvl +
“}’Zk”Q”Vz”Q + ||Y1k||Q||U2”Q

+(lIn2llg + c2llyzielle + E2lluzellvallg

= 2MIVYlloVUllg + 4llYkllo Tl +

b (O)IYllq

Whel’e l_) (C) = Bg(C) + E4(C), E3(C) = [)1 +
Clbl(C) + (’,‘151 and B4(C) = [)2 + Czbz(C) +

265, with Imillg < by llyill < bi(c) &
lluilly < ¢, Vi=1,2.

Setting b (c) = 6b,(c) + b (c), then the above
inequality Vy,; € V* X V*becomes

|fo Fredrat| -
=<
Il < b(e),

Vel 2 v 20

Relation (18) is also satisfied here and gives
that the injections of (L*(1,V))? in to
(L2(Q@)* and of ((12(@)H? in to
(L?(1,V*))? are continuous and since the
injections of (L2(1,V))? in to (L*(Q))?%. So we
got all the hypotheses of compactness
theorem, which is used here to get that there
exists a subsequence of {y,} say again {y,}
such that y,, — strongly in (L2 (Q))Z.

Now, Since for each k, y;rand y,, are
solutions of the weak form (12a) and (13a)
respectively, substituting these solutions in the
above indicate equations, then multiplying
both sides of each equation by ¢,(t) and
@, (t) respectively (with ¢; € C1[0,T], such
that ¢;(T) = 0,Vi = 1,2), rewriting the 15¢
terms in the L.H.S. of each one of their,
integrating both sides from 0 to T, finally
integrating by parts for these 1°
terms, one has

— [ G v @1 (Ddt +

LT (150 V0091 (0 + Qg v1) 0 (6) —
(Vak, V1)1 (D)]dt

= foT(fn(x: t, Y1r), V1) @1 (t)dt +

foT( fi2(x, Oug, v11(¢)) dt +

(¥1(0), v1) 91 (0)
& — [} i v2) @2 ()t +
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1o L (Y20 V02)02(6) + (V310 v2) 02 () +
(V1 v2) 2 (B)]dt

= fOT(f21(x' t,Yar), v2) 1 (£)dt +

fOT( fa2 (%, OUzk, v2902(1))

(72x(0), v2) 92 (0)
Since y, — y weakly in (L2 (Q))2

and ¥, — y weakly in (L2(I, V))Z, then

— [ G v 1 (O)dt +

fOT[ (VY1 Vo) 91 (8) + 1k, v1) 91 () —
20 VD@1 (O]dE > = [ (1,013 (e +
fOT[ (Vy1, Vv1) @1 (¢)

+ (1, v1) @1 (1) — (2, v @1 (D)]dt
& = [ ags v2) @3 ()t +

fOT[ (Vy2r, V02) 02 () + (Y21, v2) 02 (8) +
(V1o v2) @2 (B)]dt —

— [y 02 )@z ()dt +

Iy [(y2, 7v), () +

(72, 12) @2 () + (y1, v2) @2 (1) ]dt

Since y,,(0),y,,(0) are bounded in L2((Q)
and from the Projection theorem, yield

(Vi v1)91(0) = (v9,v1) e, (0)
& Y3k v2)92(0) = (¥3, v2)92(0)

Now, to prove that

Jy (a Ce, b, y0), v1) s (£)dt +
fOT( f12(x, ) ugg, 194 (2)) dt -
foT(fn(x' t,y1), v1) @1 (t)dt +

foT( fr2(x, Oug, v191(2)) dt

Let w; = v04(8), w; € L*(1,V) c
L*(1,V) c L?(Q), then w,(x,t) is fixed for
fixed (x,t) € Q, let v, € C[Q], then w; €
C[Q] is measurable w.r.t. (x,t). let fi1(y1x) =
fi1(y)ws, then f1,: Q X R = R is continuous
w.r.t. y, for fixed (x,t) € Q

and measurable w.rt. (x,t) for fixed y,.
Applying Proposition 1.3 in gives the integral
fon(ylk)w1 dxdt is continuous W.rt. yi,
but y,;, — y4, strongly in L2(Q) then Yw, €
C[Q], once get

fQ fi1(Yudwy dxdt - fQ f11(y1)wy dxdt
(35¢)

since uy, — uq,weakly in L2(Q) then

....... (35a)

.......... (36a)

(35h)
(36h)
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fQ fi2(x, uqewydxdt -
Jo File, Ouawy dxdt oo (35d)

The same way can be used to one get that
fQ fo1 (Y2 )w, dxdt -

Jo f21(72)w, dxdt, Yw; € C[Q] ... (36¢)
fQ f12(x, Uy, widxdt —
fQ 106U Wy dXAE o (36d)

Finally, using (35a,b,c & d) and (36a,b,c&d) in
(35) and (36)respectively, once get

— [] 01, v (O)dt + [ [ (Vys, Vo) (6)
+ (1, v1)@1(t) — (¥2, v @1 (D)]dt

= fOT(fn(x» t, 1), 1)1 (t)dt

+ fOT( fi2(x, Ouyg, v1) @4 () dt

+L, v1)01(0) wovine, s (38)
& - fo (2, v2) @2 (B)dt +
fOT[ (Vy2, Vv2) @, (8)

+(y%' V)02 (t) + (y1, v2) o (8)]dt
= fo (21 (., ¥2), v2) 2 (D) dt

+ fOT( f22(x, )up, 1)@, () dt

+(12,02)02(0) oo (39)
(38) and (39) are hold for each v; € C(Q) and

since C(Q) is dense in V, then also are hold for
every v; € V,Vi =1,2. hence the following
two cases are appear:

Casel: Choose ¢; € D[0,T], ie. ¢;(0) =
¢;(T) =0,vi=1,2. Using integration by
parts for the 15t terms in the L.H.S. of (38)
and (39), once get Vo, € D[0,T]

[ 10 vrdps (B)dt +

13 Ly1, 90916 + (1, v1) o (8) —

(72, 1) @1 (D)]dt

= fOT(fn(x: t,y1), v1) @1 (t)dt +

[ (2 Oy, v)@1(8) dt, o (40)
=

V1ev1) + (Vy, Vo) + (v, v1) — (02, v1)
= (fu1(x, t,y1),v1) + (fi2(x, ug, v4),
Vv, € V,a.e.on I (40a)
i.e.y; =y, satisfies (8a), & V¢, € D[0,T]

fOTO’Zt: V)@, (t)dt +

Iy [(7y2,992)02(8) + (v2,v2)p2(8) +
(71, v2) @2 (8)]dt

= fOT(f21(X’ t,¥2), v2) @, (O)dt +
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foT (a2 (%, DUz, V2) 92 (E) Aty v (41)
=

(Vat, V2) + (Vy2, Vv2) + (72, v2) + (71, 2)

= (f21(6, £, ¥2),v2) + (fa2 (x, O)uz, v3)

Vv, EV,86.0N1 i, (41a)
I.e.y, = y,, satisfies (9a).

Case 2: Choose ¢; € C1[I], such that ¢;(T) =
0 & ¢;(0) # 0,Vi = 1,2. Using integration by
parts for the 15tterms in the L.H.S. of (40) and
(41), one has

- fOT(J’1'U1)(P1(t)dt +

fOT[ (Vyy, Vo), () + (v1, v1) @1 () —

(v2, v @1 (D)]dt

= fOT(fn(x’ t,y1), v (t)dt +

fOT(flz(x, t)ug, v1) @4 (t) dt +

(¥100), 1) 01(0) coviiiiiieeee (42)
& = [ (2, v;) 3 (t)dt +

fOT[ (Vy2, Vv2) 02 () + (y2, v2) 2 (8) +

(y1, v2) 2 (t)]dt

= fOT(f21(x, t,y1), v1) @1 (t)dt +

fOT (fa2(x, Duy, v2) @, (¢) dt +
(12(0),12)02(0) oo (43)

By subtracting (42) from (38) and (43) from
(39), one obtainve; € [0,T], Vi = 1,2 that
2, v)e:i(0) = (¥;(0),v)9;(0), 9;(0) # 0
=y = y(0) = ¥ (x).

Thus y; & y, are solutions of (8-9).

Now, since

G1(Uy) = fQ 911(x%, t, y1p) dxdt +

fQ 912(x, t, y2p) dxdt

Sincevi = 1,2, g4; is independent of u; and is
continuous w.r.t. y;, then the integral

fQ g1i(x, t,vi) dxdt is continuous w.r.t. y;,
but y,, — strongly in (L2 (Q))Z, then

fQ gli(x' L, yik) dxdt - fQ gli(xr L, yl) dxdt
Then G,(U) = Ilim G,(uy) = 0.

Now, we want to prove that VI = 0,2, G;(@) is
weakly lower semi continuous (W.L.S.C.)
w.rt.  (y,u). Since g;(xt,y,u) s
continuous w.r.t. (y;,u;) and since u;(x,t) €
U; ae. in Q and U; is compact, i.e. g Iis
satisfied the assumptions of lemma 4.2, Vi =
1,2 &l = 0,2, which gives

fQ 91 (% t, Vi, wyg) dxdt —

fQ i (6 6y, ug) dxdt e (44)



but g;;(x,t,y;,u;) is convex and continuous
w.r.t. u; then fQ gii(x, t,y;, ui) dxdt is also
convex and continuous w.rt. uw; =
ngli(x, t,yi,u;) dxdt is W.L.S.C. w.rt. u;
(foreachl =02&i=1,2)1.e.

fQ gli(x' ¢, yiJui) dxdt

< ;11_{130 info Gui(x, t, v, uy) dxdt

= lim inf Jo(guiCx,t, yi, uae) —

i (xl t! Yik» uik))dxdt +
Ill_l;l(;lolnfo gli (x! t; yik; uik) dxdt .

Then by (44), one obtain that
fQ gu(x,t, yi, u;) dxdt
= %an}oinfo 91 (0 t, Vi, W) dxdt

2
= zjgli(x, t,y;,u;) dxdt <
i-1°@Q

,lijlgoinlezﬂ fQ 9u (6t Yig, wyg) dxdt
= Gl(ﬁ) < ’llm lnfGl(ﬁk) ) i.e. Gl('l_l,)) is
W.L.S.C. w.r.t. (y,u), foreach [ = 0,2.
but G,(u) <0,vk then G,(u) <0, and
= inf Go(%,) = min G,(%

e , o) TeW 4 o)

Which means that 4 is an optimal control.

Assumptions (C):

Jiy; ad g, (1=02& =1,2) are of
Carathéodory type (or continuous ) on Q X
(RxR) and are satisfied V(x,t) € Q, and
Vi, Ui ER
|91y, (6 6y u) | < My (6, 8) + g il
+éy, lwil, iy, € L2(Q)

|gliui(x' ¢, yilui)| =< nlie(x: t) + Clielyil +
+é, lwil, my, € L2(Q).

Theorem 4.2:

Dropping the index [ in g; & G;. With
assumptions (A), (B) and (C), the following
adjoint  (zy,2,) = (2z,1,2y2) €quations are
given by
—Z1e —Azy + 21 + 2,
= Z1fy1 (x,t,y1,u) + 9y1 (6t Y1, W) —Z —
Azy + 27y — 74
= Zafy2 (X, 6, Y2, Uz) + Gy (X, £, Y2, Up)
z,(T)=0and z,(T) = 0,onT

And the Hamiltonian is defined:
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H(x' L, YirZi ui) =
= Vi @ifile ty,w) + gi(x, i, u))
Then the Fréchet derivative of G is given by

cen 70 _ o (Zfu T gu1> ) <6u1>
G@) - du = fQ <szu2 +9u0) \ou, dxdt

Proof:
At first let

G) = fQ g1(x, t, y1,uy)dxdt +

fQ 92(x,t, y2, up)dxdt

Where u is a given control and y, is its
corresponding solution of the state equation.
From the assumptions on g, and g,, the
definition of the Fréchet derivative, the result
of Lemma 3.1, and then using Minkowiski
inequality, we have

Go(U + 6u) — Gy(u)

= fg(g1y153’1 + g1u16u1)dx +

fQ(QZyZSYZ + gZu25u2)dx

+el(6u)||6u||0

where &, (6u) — 0& ||6u||, — 0as 5u — 0.

On the other hand, the weak forms of the
adjoint equations are

—(z16,v1) + (Vz,, Vvp) + (24, v1)
+(z3,v1) = (Zlflyl' 771) + (g1y1'771)
& —(z31,v2) + (Vzy, Vv,) + (23, 13)
—(z1,v3) = (Z2f2y21v2) + (92y2:172) ... (47)

The proof of the unique solution of the
weak form (46-47) is similar to the proof of
the unique solution of the state equation (8-9).
Substituting v; = 6y;in (46) and v, = §y,in
(47), integrating both sides from 0 to T and
then integration by parts for the 15¢ terms of
each obtained equation, one has

fOT(SYu.Zﬂ dt + fOT[ (Vzy, VEy,) +
(71, 6y1) + (22, 6y1)]dt =

I (21 fiy1891) + (G1y1, 831)1dE o (48)
& fOT(6y2t122> dt + foT[ (Vz,,Véy,) +
(22,6y,) — (21, 8y,)]dt =

fOT[ (ZZnyZ: §y,) + (gZyZ; §Y2)]dt oo, (49)

Substituting the solution y;once in (12) and
then the solution y, +&y; once again,
subtracting the obtained equations one from
the other, with v; = z;, we have
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fOT<53’1t: zp)dt + fOT[ (V6yy,Vzy) +
(6y1,21) — (8y2, z1)]dt =

fOT(f1(3’1 +0y1,uy + 6uy), z,)dt —
Jy (), z,)dt

Also substituting the solutions y,once in
(13) and then the solution y,+dJy, once again,
subtracting the obtained equations one from
the other, withv, = z,, we have

f0T<5)’2t» zy)dt + fOT[ (V6y2, Vz,) +
(6y2,22) + (8y1,27)]dt =

fOT(fz(YZ + 8y, up + 6uy), z5)dt —
Jy (o 02u2), 2,)dlt

From the assumptions on f; and f,, the
Fréchet derivatives of f; and f, are exist, then
from the result of Lemma 3.1 and the
Minkowiski inequality, once get

f0T<53’1t»Z1) dt + fOT[ (V6y1,Vzy) +
(6y1,21) — (6y2,z1)]dt =
foT(f1y15Y1 + fruabuy, zy)dt +

e (6u)[6ul],
&
f0T<5)’2t»Zz) dt + fOT[ (V6y,,Vz,) +
(6y2,22) + (6y1,2,)]dt =
fOT(nyz(SYZ + fauabuz, z;)dt +

e3 (8|5,

Subtracting (52) and (53) from (48) and
(49), adding the obtain equations, one get

fOT[ (frua6us, z1) + (fouz6uz, 22)]dt +
@), -

Iy [(91y1,891) + (g2y2, 672)]dt (54)

Where &,(8u) = &,(6u) + &5(6u) — 0, as
18w ll, — 0

Now, substituting (54) in (45), once get
G(ug + 6ug) — G(uy) = fQ(Zlf1u1 +
J1u1)0uy dxdt + fQ(szZuz +

G2uz) Uy dxdt + e5(5u)||6u I,

Where 85(@)) = 61($) + 84(@)) — 0,
as |8 ||, — 0

Vol.19 (1), March, 2016, pp.173-186

183

Science

Hence the Fréchet derivative of G is

A L o Z1 fru + g1u1> . <5u1>
GQ) - ou = fQ <sz2u2 + G2/ \OUu, dxdt

5. Necessary and sufficient conditions for
optimality:

In this section the necessary theorem for
optimality under prescribed assumptions is
proved so as the sufficient theorem for
optimality as follows:

Theorem 5.1: Necessary Conditions for
Optimality (Multipliers Theorem):

a) with assumptions (A),(B) and (C) if W is

convex, the control % € W, is optimal, then

there exist multipliers 4; € R, [ = 0,1,2 with

2
Ao=0,1,=>0,X|4] =1 such that the
=0

following Kuhn-Tucker-Lagrange (K.T.L.)
conditions are satisfied: fQHﬁ(x,t,:)_},E,ﬁ)'

Sudxdt > 0

2
where gi = Z Algli and Zi =
=0 l

1,2) in the definition of H and Z, and also the
Transversality condition is

A,G,(W) =0
(b)(Minimum principle in weak form) If W=
Wﬁ then inequality (56a) is equivalent to the
minimum principle in point wise form

Hyz(x, t,y,Z,4).u(t) =

min Hy(x, t,y,Z,1U). W, a. e.onQ, ............ (57)
weu

Proof:

a) From Theorem(4.2)we get that the

functional G,(d) has a continuous Fréchet
derivative at each # € W, since the control

i €W, is optimal, then using the K.T.L.
theorem there exist multipliers 4; € R, [ =

2
0,1,2 with A, >0,4,>0,Y |4] = 1,such
=0

that v € W
(Aocoﬁ(ﬁ) + 0,6y (@) + Azczﬁ(ﬁ)) (W —
@) >0

Substituting the Fréchet derivatives of
G,(1) (forl =0,1,2) in the above inequality,
ie. Zi2=1fQ[(Zifiui + Gii)] duydxdt = 0,



where g; = Y70 A Gu 2 = Bicohi zy, Vi=
1,2, or

fQ(Zlfml + G1uyr Z2Mu, + Gou,)-6udx = 0
= fQ Hy(x, t,y,Z,1) - Sudxdt = 0,

VWeEW, Su=w-1u

To prove the second part, let {w,} dense in

a set W, u is Lebesgue measure on Q and let
S c Q be a measurable set such that

- _ (We(x,t),if (x,t) ES
Wi ) = { u(x,t),if (x,t) &S
Therefore (56a) becomes for each S
f Hy(x,t,5,7
S

Hy(x,t,y,Z,d)(W, —u) = 0,a.e.in Q

U (W, —u)=0 =

This inequality holds in a set P = Ny Py,
where P, = Q — Qy, u(Qy) =0, Vk, but P is
independent of k with u(Q —P) =0
but {W,} is dense in W, then (58) becomes
Hy(x,t,y,Z,0)(W —d) =0, ae. in Q =
Hy(x,t,y,Z,0)d = min Hy(x, t,y, Z, W)W,

. weu
a.e. in Q.
The converse is clear.

Theorem 5.2: (Sufficient Conditions for
Optimality): In Addition to the assumptions
(A), (B) and (C), Suppose that W is convex,
fi,f» and gq;are affine w.rt. (y;,u;) for
each(x,t)and gy &g.;are convex W.r.t.
(y;,u;) for each (x,t),Vi=1,2. Then the
necessary conditions in Theorem 5.1 with
Ao > 0 are also sufficient.

Proof:
Assume u is satisfied the K.T.L. condition,

and i € W, i.e.

J,Ha(x 63,7, W)dudxdt >0, vw € W and
/1202(17) =0

Let G(W) = Y& ,1,G,(1), then using theorem
4.2, we have

G@) - du =

Yicoh fQ Y1 (Zufi + Guiw) Su; dxdt

= [, Ha(x, 63,7 #)su dxdt > 0

Since

fi(x,t,y,u1) = f11(x, Oy + fi2(x, Duy
+f13(x,t), and

f2008,y2,u3) = fo1(x, D)ya + f22(x, Du,

184

Jamil A. Ali Al-Hawasy

+/23(x, £),

Let 4 = (uy,u,) & = (iy, U,) are two given
controls  vectors, then y = (yu1,Vu2) =
1.¥2) & ¥ = ar, Vaz) = (91, 72) are their
corresponding stats solutions. Substituting the
pair (i,y) in equations (1-6) and multiplying
all the obtained equations by « € [0,1] once
and then substituting the pair (@,y) in (1-6)
once again and multiplying all the obtained
equations by (1 — a), finally adding each pair
from the corresponding equations together one
gets:

(ay: + (1 —a)y, )¢ — Alay, + (1 —a)yy) +
(ay; + (1 —a)y) — (ay, + (1 — a)y,)

= fi1(x, )(ay, + 1 —a)y,) +

fi2(x, ) (auy + (1 — a)y) + f13(x, t)

ay;(x,t) + (1 —a)y;(x,0) =0
ay;(x,0) + (1 — &)y, (x,0) = y2(x) ....(59¢)

(ay; + (1 —a)y, )¢ — Alay, +
1-a)y,) t(ay, + (1 —a)y,) ta
(ay; + (1 — a)y,)

= fulx, ) (ay, + (1 —a)y,) +

f22(x, ) (auy + (1 — a)uy) + fr3(x, t)

ayZ(x' t) + (1 - CZ)}_/Z(X, 0) =0
ay,(x,0) + (1 — a)y,(x,0) = y3(x) ....(60c)

Equations (59) and (60) tell us that if we
have the control vector @ = (i, @,) With & =
au + (1 —a)u then its corresponding state
vector (solution) is 53 = (J1,¥2) with ¥;
Yit, = Yiaw+(1- 0w = @yi + (1 — a)y;, for
each i = 1,2. So we get the operator U +— yy
is convex — linear w.rt. (y,u) for each

(x,t)) € Q.

On the other hand, the function G, (i) is
convex — linear w.r.t. (y,1), V(x,t) € Q, this
back to the fact that the sum of two affine
functions gq;(x, t,y;,u;)) (Vi=12) w.rt.
(yi,u;) and V(x,t) € Q is affine and the
operator i — y is convex-linear.

Also, since the functions G,(1) and G, (i) are
convex w.rt. (y,u), V(x,t) € Q (from the
assumptions on the functions g;; and g,
[ =0,2 and from the fact that the sum of two
integral of convex function is also convex).
then G (&) is convex w.r.t. (y,u), V(x,t) € Q
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in the convex set W, and has a continuous
Fréchet derivative satisfies

5(17)511 >0 = G(u) has a minimum at
i =G6U)<GW),VWeW = 1,6,(@) +
216G, (@) + 2,6, ()
< AoGo(W) + 1,6, (W) + 2,G,(W)

Let W € W,, with 1, >0 and from the
Transversality condition, we get

LoGo(@) < AoGo (W), YW € W =
Go(@) < G, (W), YW € W, since (1, > 0)
=~ u is an optimal control for the problem.

6. Conclusions

The Galerkin method with the compactness
theorem are used successfully to prove the
existence and the uniqueness "continuous state
vector" solution for a couple nonlinear
parabolic partial differential equations for
fixed continuous classical control vector. The
existence theorem of a continuous classical
optimal control vector governing by the
considered couple of nonlinear partial
differential equation of parabolic type with
equality and inequality constraints is proved.
The existence and the uniqueness solution of
the couple of adjoint equations associated with
the considered couple equations of the state is
studied. The Frcéhet derivation of the
Hamiltonian is derived. The necessary
conditions theorem so as the sufficient
conditions theorem of optimality of the
constrained problem are developed and
proved.
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