Modules and Bounded Linear Operators

Muna Jasim and Manal Ali
Department of Mathematics, College of Science for Women, Baghdad University.

Abstract

An associated R-module of T, which is denoted by $V_{T, T^{*}}$ is given, Where V is an inner product space and T is bounded linear operator on V. We study in this paper properties of T which effects $V_{T, T^{*}}$ and conversely.

Keywords: The module of an operator, algebraic elements of T, torsion elements of $H_{T, T^{*}}$.

1. Introduction

SALMA M. FARIS in [1] described a left R-module V where R the polynomials ring in x and V is vector space as follows:- $\emptyset: R \times$ $V \rightarrow V \quad$ by $\emptyset(P, v)=P . v=P(T) v \quad$ this function makes V a left R-module denoted by V_{T}. In this paper we start by introducing a left R - module on the ring of polynomials in x, y and V is an inner product space as follows:$\Psi: R \times V \rightarrow V$ by $\Psi(P, v)=P\left(T, T^{*}\right) v$ this function makes V a left R-module and denote this module by $V_{T, T^{*}}$. In proposition (3.2) we give form of elements of $V_{T, T^{*}}$. We prove that $V_{S, S^{*}}$ is isomorphic to $V_{T, T^{*}}$ if and only if S is similar to T, we study the relation between the *- algebraic elements and the torsion elements of $H_{T, T^{*}}$, and the module associated with the unilateral shift operator we prove that $H_{U, U^{*}}$ is acyclic R-module.

2. Preliminaries

In this section the fundamental basic concepts and primitive results are Given.

Definition (2.1) [1]:

Let V be a vector space over a field F. Let T be a linear operator acting on the elements of V on the left .Let $\mathrm{R}=\mathrm{F}[\mathrm{x}]$ be the ring of polynomials in x with coefficients in F . Define $\varnothing: R \times V \rightarrow V$ by $\emptyset(P, v)=P . v=$ $P(T) v$.

It is clear that \emptyset makes V a left R-module denoted V_{T}, and call it the associated R-module.

The form of every element in V_{T} is illustrated in the following proposition.

Proposition (2.2) [1]:

If $S=\left\{V_{j}: j \in \Lambda\right\}$ is a basis for V, then each element of V_{T}

Can be written in the form $\sum_{i=0}^{n} \sum_{j \in \Lambda} c_{i j} T^{i} v_{j}$, where $c_{i j} \in F$

The symbol $\sum_{j \in_{\Lambda}}$ means that the sum is taken over a finite subset of Λ.

Remark (2.3) [1]:

V_{I} is a finitely generated R -module if and only if V is a finite dimensional vector space.

In this remark there is a relation between a finite dimensional vector space V and V_{T}

Remark (2.4) [1]:

Let V be a finite dimensional vector space. Let T be an operator on V, then V_{T} is a finitely generated R-module.

Recall that if T and S two operators on $V . S$ is similar to T if there exists an invertible operator h on V such that $h S h^{-1}=T$ [2].

Proposition (2.5) [1]:

Let T and S be two operators on V.Then V_{S} is isomorphic to V_{T} if and only if S is similar to T.

Definition (2.6) [2]:

Let T be an operator on a vector space. T is said to be of finite rank if the image of T is finite dimensional.

It is shown in (2.4) that if V is a finite dimensional vector space, then V_{T} is a finitely generated R - module. Also if V is finite dimensional vector space, and T is any operator on V, then $T V$ is finite dimensional. Hence T is of finite rank. Following proposition give the converse.

Proposition (2.7) [1]:

If T is of finite rank, and V_{T} is finitely generated, then V is finite dimensional.

Definition (2.8) [3]:

Let $T: V \rightarrow V$ be an operator. $v \in V$ is said to be an algebraic element (or T-algebraic) if there exists a non zero polynomial $P \epsilon R$ such that $P(T) v=0$.
T is said to be algebraic if there exists $P \neq$ 0 in R such that $P(T) v=0, \forall v \in V$

Proposition (2.9)[1]:

Let $T: V \rightarrow V$ be an operator. Let $A=A(T)$ be the set of all T-algebraic elements. Then A is a subspace of V.

There is a relation between the T-algebraic elements and the torsion elements of V_{T} this relation is studied in the next proposition.

Recall that an element m of S-module where S is a ring is torsion element if there exists $0 \neq t \in S$ such that $t m=0, M$ is torsion S-module if $\tau(M)=M$
where $\tau(M)$ the set of all torsion elements. [3]

Proposition (2.10)[1]:

Let T be an operator on V, then $A_{T}=\tau\left(V_{T}\right)$
Recall that for any ring S and any S-module $\quad M, \operatorname{ann}(M)=\{t \in S: t m=$ $0, \forall m \in M\}$, and ann $(M)=0$ then M is a faithful S-module.[4].

Proposition (2.11)[1]:

V_{T} is faithful R-module if and only if T is not an algebraic operator.

The module of the Unilateral shift operator is given finally.

Let $U: l_{2}(R) \rightarrow l_{2}(R)$ be the operator defined by $U\left(x_{1}, x_{2}, \ldots\right)=U\left(0, x_{1}, x_{2}, \ldots\right)$

This operator called the Unilateral shift operator.[5]

Remark (2.12)[1]:

$\forall i, K \in N$, one can easily see that:

1. $\mathrm{Ue}_{\mathrm{k}}=\mathrm{e}_{\mathrm{k}+1} 2 . U^{\mathrm{i}} \mathrm{e}_{\mathrm{k}}=\mathrm{e}_{\mathrm{i}+\mathrm{k}} 3 . U^{\mathrm{i}} \mathrm{e}_{\mathrm{k}}=$ $U^{i+k-1} e_{1}$.

Recall that a left R-module M is called acyclic if M can be generated by a single element. $M(x)=R x=\{r x / r \in R\}$ for some x in M.

Theorem (2.13)/1]:

Let U be the Unilateral shift operator on H. Then H_{U} is a cyclic faithful R-module. Hence a free R-module.

3. Main Results

Definition (3.1):
Let $\mathrm{R}=\mathrm{F}[\mathrm{x}, \mathrm{y}]$ be the ring of polynomials in x, y with coefficients in F . Let V be an inner product space over afield F and T be a bounded linear operator acting on the elements of V on the left .We will define a left R-module on V as follows: $\Psi: R \times V \rightarrow V$
by $\Psi(P, v)=P\left(T, T^{*}\right) v \quad$ i.e $\quad \mathrm{P}(\mathrm{x}, \mathrm{y})=$ $\sum_{\mathrm{i}=0}^{\mathrm{m}} \sum_{\mathrm{j}=0}^{\mathrm{n}} \quad \mathrm{a}_{\mathrm{ij}} \mathrm{X}^{\mathrm{i}} \mathrm{y}^{\mathrm{j}}, \mathrm{a}_{\mathrm{ij}} \in \mathrm{F}$. [6] It is clear that Ψ makes V a unitary left $\mathrm{R}-$ module. We shall denote this module by $\mathrm{V}_{\mathrm{T}, \mathrm{T}^{*}}$.

In the following proposition we introduce the form of each element of $V_{T, T^{*}}$.

Proposition (3.2):

If $S=\left\{v_{l}: l \in \Lambda\right\}$ is a basis for V. then each element of $V_{T, T^{*}}$ can be Written in the form $\sum_{j=0}^{m} \sum_{i=0}^{n} \sum_{l \in \Lambda} c_{i l} T^{i} T^{* j} v_{l}, c_{i l} \in F$

The symbol $\sum_{l \in_{\Lambda}}$ means that the sum is taken over a finite subset of Λ

Proof:- let $\mathrm{w} \in \mathrm{V}_{\mathrm{T}, \mathrm{T}^{*}}$, then
$\mathrm{w}=\sum_{\mathrm{k}=1}^{\mathrm{m}^{\prime}} \mathrm{P}_{\mathrm{k}} \cdot \mathrm{w}_{\mathrm{k}}$, where

$$
P_{k}(x, y)=\sum_{j=0}^{m}\left(P_{k}(x)\right) y^{j}
$$

$P_{k}(x)=\sum_{i=0}^{n_{k}} a_{i k} x^{i}$
$\mathrm{P}_{\mathrm{k}}(\mathrm{x}, \mathrm{y})=\sum_{\mathrm{j}=0}^{\mathrm{m}}\left(\sum_{\mathrm{i}=0}^{\mathrm{n}_{\mathrm{k}}} \mathrm{a}_{\mathrm{ik}} \mathrm{x}^{\mathrm{i}}\right) \mathrm{y}^{\mathrm{j}} \in \mathrm{R}$
$w_{K}=\sum_{l \in \Lambda} b_{K l} v_{l} \in V$,then

$$
w=\sum_{k=1}^{m^{\prime}} \sum_{j=0}^{m}\left(\sum_{i=0}^{n_{k}} a_{i k} T^{i} T^{*}\right)\left(\sum_{l \in \Lambda} b_{k l} v_{l}\right)
$$

Let $\mathrm{n}=\max \left\{\mathrm{n}_{1}, \mathrm{n}_{2}, \cdots, \mathrm{n}_{\mathrm{m}}\right\}, \mathrm{a}_{\mathrm{ik}}=0, \forall \mathrm{i}>$ $\mathrm{n}_{\mathrm{k}}, \mathrm{k}=1,2, \cdots, \mathrm{~m}^{\prime}$
Then
$\mathrm{w}=$
$\sum_{\mathrm{j}=0}^{\mathrm{m}} \sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{ik}} \mathrm{T}^{\mathrm{i}} \mathrm{T}^{* \mathrm{j}}\left(\sum_{k=1}^{m^{\prime}} \sum_{l \in \Lambda} b_{k l} v_{l}\right)$
$=\sum_{\mathrm{j}=0}^{\mathrm{m}} \sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{T}^{\mathrm{i}} \mathrm{T}^{* \mathrm{j}}\left(\sum_{l \in \Lambda} \sum_{k=1}^{m^{\prime}} a_{i k} b_{k l} v_{l}\right)$
$=\sum_{\mathrm{j}=0}^{\mathrm{m}} \sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{T}^{\mathrm{i}} \mathrm{T}^{* \mathrm{j}}\left(\sum_{l \in \Lambda} c_{i l} v_{l}\right)$
Where $c_{i l}=\sum_{k=1}^{m^{\prime}} a_{i k} b_{k l}$
Thus $\mathrm{w}=\sum_{\mathrm{j}=0}^{\mathrm{m}} \quad \sum_{\mathrm{i}=0}^{\mathrm{n}} \quad \sum_{l \in \Lambda} c_{i l} T^{i} T^{* j} v_{l}$

Examples (3.3):

1. Let $\left\{v_{l}: l \in \Lambda\right\}$ be abasis for an inner product space V.
(a) Let 0 be the zero operator on V .If $\mathrm{w} \in$ $\mathrm{V}_{0,0^{*}}$ then by proposition (3.2)
$w=\sum_{j=0}^{m} \sum_{i=0}^{n} \sum_{l \in \Lambda} c_{i l} 0^{i} 0^{* j}, c_{i l} \in F$. Recall that $0^{0}=\mathrm{I}$, then $w=\sum_{l \in \Lambda} c_{0 l} v_{l}$
(b) Let I be the Identity operator on V.If $\mathrm{w} \in \mathrm{V}_{\mathrm{I}, \mathrm{I}^{*}}$ then by proposition (3.2)
, $w=\sum_{j=0}^{m} \sum_{i=0}^{n} \sum_{l \in \Lambda} c_{i l} I^{i} I^{j} v_{l}$
put $c_{l}=\sum_{i+j=0}^{n+m} c_{i l}$
Then $w=\sum_{l \in \Lambda} c_{l} v_{l}$
2. Let T be a bounded linear operator on a Hilbert space.
(a) T is a Self-adjoint operator, if $\mathrm{T}=\mathrm{T}^{*}$.[2]
Then by proposition (3.2)

$$
w=\sum_{i+j=0}^{n+m} \sum_{l \in \Lambda} c_{i l} T^{i+j} v_{l}
$$

(b) T is Normal operator , if $\mathrm{TT}^{*}=\mathrm{T}^{*} \mathrm{~T}$.[2]

Then by proposition (3.2),

$$
\mathrm{w}=\sum_{\mathrm{j}=0}^{\mathrm{m}} \sum_{i=0}^{n} \sum_{l \in \Lambda} c_{i l} \mathrm{~T}^{*^{\mathrm{i}}} \mathrm{~T}^{\mathrm{j}} v_{l}
$$

Remark (3.4):

$\mathrm{V}_{\mathrm{I}, \mathrm{*}^{*}}$ is a finitely generated R-module if and only if V is a finite dimensional an inner product space.

Proof:

Let $\mathrm{V}_{\mathrm{I}, \mathrm{I}^{*}}$ is finitly generated R-module with generators $\left\{\mathrm{u}_{1}, \mathbf{u}_{2}, \ldots, \mathrm{u}_{\mathrm{m}}\right\}$ we prove by contradiction suppose that V is not finite
Dimensional. Let $\left\{e_{l}: l \in \Lambda\right\}$ be a basis for V by Ex:1.(b), $\mathrm{u}_{\mathrm{j}} \in \mathrm{V}$
$u_{j}=\sum_{k \in \Lambda} c_{k} e_{k}, j=1,2, \ldots, m$. Thus $V_{I, I^{*}}$ can be generated by a finite number of elements of the set $\left\{e_{l}: l \in \Lambda\right\}$, say, $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{n}}\right\}$
Therefore if $K>n$ then $\mathrm{e}_{\mathrm{k}}=\sum_{\mathrm{t}=1}^{\mathrm{m}} \mathrm{P}_{\mathrm{t}} \cdot \mathrm{e}_{\mathrm{t}}$
Where $P_{t}(\mathrm{x}, \mathrm{y})=\sum_{i=0}^{n} \quad\left(\sum_{\mathrm{j}=0}^{\mathrm{k}_{\mathrm{t}}} \mathrm{a}_{\mathrm{tj}} \mathrm{x}^{\mathrm{j}}\right) \mathrm{y}^{\mathrm{i}}$

$$
\begin{gathered}
\mathrm{e}_{\mathrm{k}}=\sum_{\mathrm{t}=1}^{\mathrm{m}} \sum_{\mathrm{i}=0}^{\mathrm{n}}\left(\sum_{\mathrm{j}=0}^{\mathrm{k}_{\mathrm{t}}} \mathrm{a}_{\mathrm{tj}} \mathrm{x}^{\mathrm{j}}\right) \mathrm{y}^{\mathrm{i}} \cdot \mathrm{e}_{\mathrm{t}} \\
=\sum_{\mathrm{j}=0}^{\mathrm{k}_{\mathrm{t}}} \mathrm{a}_{\mathrm{tj}} \mathrm{e}_{\mathrm{t}}
\end{gathered}
$$

Put $\mathrm{a}_{\mathrm{t}}=\sum_{\mathrm{j}=0}^{\mathrm{k}_{\mathrm{t}}} \mathrm{a}_{\mathrm{tj}}$
then $p_{t} . e_{t}=a_{t} . e_{t}, t=1,2, \ldots, m$
Therefore , $e_{k}=\sum_{t=1}^{n} a_{t} e_{t}$
Which is a contradiction, thus V is a finite dimensional an inner product space.
Assume V is an n-dimensional normed space with basis $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$. Let $w \in V_{I, I^{*}}$ by Ex:1.(b) $\mathrm{w}=\sum_{l=1}^{n} c_{l} v_{l}$

This shows that $V_{I, I^{*}}$ is a finitely generated R-module.
Compare the following with proposition (2-5)

Proposition (3.5):

Let T, S be two bounded operators on V.then $\quad V_{S, S}$ and $V_{T, T^{*}}$ are isomorphic R -module iff S and T are similar.

Proof:

If $V_{S, S^{*}}$ is isomorphic to $V_{T, T^{*}}$
Let h: $\mathrm{V}_{\mathrm{S}, \mathrm{S}^{*}} \rightarrow \mathrm{~V}_{\mathrm{T}, \mathrm{T}^{*}}$ be an R -isomorphisim
Thus $\mathrm{h}\left(\mathrm{w}_{1}+\mathrm{w}_{2}\right)=\mathrm{h}\left(\mathrm{w}_{1}\right)+$
$\mathrm{h}\left(\mathrm{w}_{2}\right), \forall \mathrm{w}_{1}, \mathrm{w}_{2} \in \mathrm{~V}_{\mathrm{S}, \mathrm{S}^{*}}$
$\mathrm{h}(\mathrm{P}(\mathrm{x}, \mathrm{y}) \cdot \mathrm{w})=\mathrm{P}(\mathrm{x}, \mathrm{y}) \cdot \mathrm{h}(\mathrm{w}), \forall \mathrm{P} \in \mathrm{R}, \mathrm{w} \in$ $\mathrm{V}_{\mathrm{S}, \mathrm{S}^{*}}$
i.e h is homomorphisim .then we can define h as:
$\mathrm{h}\left[\mathrm{P}\left(\mathrm{S}, \mathrm{S}^{*}\right) \mathrm{w}\right]=\mathrm{P}\left(\mathrm{T}, \mathrm{T}^{*}\right) \mathrm{h}(\mathrm{w})$
If P is a constant polynomial $a, a \in F$, then $h(a v)=a h(v)$
Thus h is a linear operator call it again h, if $P(x, y)=x+y$
Then $h(P(x, y) w)=P(x, y) h(w)$
$h((x+y) w)=(x+y) h(w)$
$h\left(S+S^{*}\right)=\left(T+T^{*}\right) h$
$\mathrm{hSh}^{-1}+\mathrm{hS}^{*} \mathrm{~h}^{-1}=\mathrm{h}^{-1} \mathrm{Th}+\mathrm{h}^{-1} \mathrm{~T}^{*} \mathrm{~h}$
Then $\mathrm{hSh}^{-1}=\mathrm{T}, \mathrm{hS}^{*} \mathrm{~h}^{-1}=\mathrm{T}^{*}$
Then S is similar to T
If S and T are similar then there exists an operator h on V s.t
$h\left(S+S^{*}\right) h^{-1}=T+T^{*}$ it is easy to cheack that
$h P\left(S, S^{*}\right)=P\left(T, T^{*}\right) h \forall P \in R$
Define $\mathrm{h}^{\prime}: \mathrm{V}_{\mathrm{S}, \mathrm{S}^{*}} \rightarrow \mathrm{~V}_{\mathrm{T}, \mathrm{T}^{*}}$
By $h^{\prime}\left[P\left(S, S^{*}\right) v\right]=P\left(T, T^{*}\right) h(v)$
If $P_{1}\left(S, S^{*}\right) v_{1}=P_{2}\left(S, S^{*}\right) v_{2}$
Then $h\left[P_{1}\left(S, S^{*}\right) \mathrm{V}_{1}\right]=\mathrm{h}\left[\mathrm{P}_{2}\left(\mathrm{~S}, \mathrm{~S}^{*}\right) \mathrm{v}_{2}\right]$
(since h operator)
Then by
(1) $P_{1}\left(T, T^{*}\right) h\left(v_{1}\right)=P_{2}\left(T, T^{*}\right) h\left(v_{2}\right)$

By
(2) $h^{\prime}\left[P_{1}\left(S, S^{*}\right) v_{1}\right]=h^{\prime}\left[P_{2}\left(S, S^{*}\right) v_{2}\right]$.thus h^{\prime} is well define.
If $h^{\prime}\left[P\left(S, S^{*}\right) v\right]=0$,
then $\mathrm{P}\left(\mathrm{T}, \mathrm{T}^{*}\right) \mathrm{h}(\mathrm{v})=0$
By (1) $h p\left(S, S^{*}\right) v=0$ but h is invertible then $p\left(S, S^{*}\right) v=0$

Therefore h^{\prime} is $1-1$
Let $P\left(T, T^{*}\right) v \in V_{T, T^{*}}$ since $v \in V$
Then $\mathrm{h}^{-1}(\mathrm{v}) \in \mathrm{V}$ and $\mathrm{P}\left(\mathrm{S}, \mathrm{S}^{*}\right) \mathrm{h}^{-1}(\mathrm{v}) \in \mathrm{V}_{\mathrm{S}, \mathrm{S}^{*}}$
$h^{\prime}\left[P\left(S, S^{*}\right) h^{-1}(v)\right]=P\left(T, T^{*}\right) h h^{-1}(v)=$ P(T, T*)v

Thus h' is on to
Note $h^{\prime}\left[P\left(S, S^{*}\right) v\right]=h\left[P\left(S, S^{*}\right) v\right]$, but h is an operator, hence
h^{\prime} is an R-homomorphism, therefore h^{\prime} is an R-isomorphism.

Remark (3.6):

If V is a finite dimensional an inner product space, then $\mathrm{V}_{\mathrm{T}, \mathrm{T}^{*}}$ is finitely generated R -module.

We show in (3.6) that if V is a finite dimensional an inner product space, then V_{T} is finitely generated R-module, also if V is finite dimensional and T is any operator on V, then $T V$ is finite dimensional, hence T is of finite rank.

Proposition (3.7):

If T is of finite rank, and $V_{T, T^{*}}$ is finitely generated, then V is finite dimensioal.

Proof:

Let $K=K\left(T T^{*}\right)=\left\{w \in V: T^{*} w=0\right\}$ it is clear that K is an invariant subspaces of V , and $\mathrm{TT}^{*} \mathrm{~V} \cong \frac{\mathrm{~V}}{\mathrm{~K}}$

We prove by contradiction way .Assume V is not finite dimensional. $\mathrm{TT}^{*} \mathrm{~V}$ is finite dimensional since T is finite rank, thus K must be infinite dimensional but K is an invariant subspace of V ,then the submodule $\mathrm{K}_{\mathrm{T}, \mathrm{T}^{*}}$ is generated by the set $\left\{\mathrm{T}^{\mathrm{i}} \mathrm{T}^{* j} \mathrm{~W}_{1}: l \in \Lambda\right.$; $\mathrm{i}=0,1, \cdots ; j=0,1, \cdots\}$ where $\left\{\mathrm{w}_{1}: l \in \Lambda\right\}$ is abasis for $\mathrm{K} . \mathrm{w}_{\mathrm{l}} \in \mathrm{k}$ means that $\mathrm{T} \mathrm{T}^{*} \mathrm{w}_{\mathrm{l}}=$ 0 .Hence the restriction of T^{*} on K is the zero operator,thus $\mathrm{K}_{\mathrm{T}, \mathrm{T}^{*}}=\mathrm{K}_{0,0^{*}}$ by (3.2) $\mathrm{K}_{\mathrm{T}, \mathrm{T}^{*}}$ cannot be finitely generated, and since R Noetherian [7], $\mathrm{V}_{\mathrm{T}, \mathrm{T}^{*}}$ is finitely generated then $\mathrm{K}_{\mathrm{T}, \mathrm{T}^{*}}$ is finitely generated .this contradiction shows that V is finite dimensional.

Definition (3.8) [8]:

An operator $T \in B(H)$ is said to be *-algebraic operator if there exists non-zero polynomial of two variables P such that
$\mathrm{P}\left(\mathrm{T}, \mathrm{T}^{*}\right) \mathrm{x}=0 \quad, \forall x \in H . \quad x \in H$ is called *-algebraic element if there exists non zero polynomial of two variables P such that $\mathrm{P}\left(\mathrm{T}, \mathrm{T}^{*}\right) \mathrm{x}=0$.

Proposition (3.9):

Let $\mathrm{T}: \mathrm{H} \rightarrow \mathrm{H}$ and $\mathrm{A}=\mathrm{A}\left(\mathrm{T}, \mathrm{T}^{*}\right)$ be the set of all *-algebraic elements then A is a subspace of H .

Proof:

Let $u, v \in A$ then there exist non-zero polynomial p, q inR such that
$\mathrm{P}\left(\mathrm{T}, \mathrm{T}^{*}\right) \mathrm{u}=0$ and $\mathrm{q}\left(\mathrm{T}, \mathrm{T}^{*}\right) \quad \mathrm{v}=0, \quad$ then $\mathrm{P}\left(\mathrm{T}, \mathrm{T}^{*}\right) \mathrm{q}\left(\mathrm{T}, \mathrm{T}^{*}\right)(\mathrm{u}+\mathrm{v})=0$
Since $R=F[x, y]$ is an integral domain [9], hence $\operatorname{Pq} \neq 0$, therefore
$u+v \in A$ if $a \in F$ then $P\left(T, T^{*}\right) a u=$ $a P\left(T, T^{*}\right) u=0$ thus $a u \in A$ therefore A subspace of H .

Proposition (3.10):

Let T be an operator on H , then $\mathrm{A}_{\mathrm{T}, \mathrm{T}^{*}}=\tau\left(\mathrm{H}_{\mathrm{T}, \mathrm{T}^{*}}\right)$

Proof:

let $0 \neq \mathrm{w} \in \mathrm{A}_{\mathrm{T}, \mathrm{T}^{*}}$. then $\mathrm{w}=\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{P}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}$ for some $P_{i} \in R, v_{i} \in A \forall i$

There exists $\mathrm{q}_{\mathrm{i}} \neq 0$ in R such that $\mathrm{q}_{\mathrm{i}}\left(\mathrm{T}, \mathrm{T}^{*}\right) \mathrm{v}_{\mathrm{i}}=0$
henceq($\mathrm{T}, \mathrm{T}^{*}$) $\mathrm{w}=\mathrm{q} \cdot \mathrm{w}=0$ where $\mathrm{q}=$
$\mathrm{q}_{1} \mathrm{q}_{2} \cdots \mathrm{q}_{\mathrm{n}}$ Thus $\mathrm{w} \in \tau\left(\mathrm{H}_{\mathrm{T}, \mathrm{T}^{*}}\right)$
And let $u \in \tau(H)$,then there exists $P \neq 0$ in R
Such that $\mathrm{P} . \mathrm{u}=0$ therefore $\mathrm{P}\left(\mathrm{T}, \mathrm{T}^{*}\right) \mathrm{u}=$ 0 , thus $u \in A_{T, T^{*}}$
Therefore $A_{T, T^{*}}=\tau\left(H_{T, \mathrm{~T}^{*}}\right)$
In the following proposition we give the relation between faithful R-module and *-algebraic operator.

Proposition (3.11):

$\mathrm{H}_{\mathrm{T}, \mathrm{T}^{*}}$ is a faithful R-module if and only if T is not ${ }^{*}$-algebraic operator.

Proof:

Let $\mathrm{P} \in \mathrm{R}$ such that $\mathrm{P}\left(\mathrm{T}, \mathrm{T}^{*}\right) \mathrm{v}=0 \forall \mathrm{v} \in \mathrm{H}$
Then P. $v=0 \forall x \in H$. Thus P. $\mathrm{v}=0 \forall \mathrm{v} \in$ $\mathrm{H}_{\mathrm{T}, \mathrm{T}^{*}}$ hence $\mathrm{P} \in \operatorname{ann}\left(\mathrm{H}_{\mathrm{T}, \mathrm{T}^{*}}\right)$
Therefor $P=0$ and T is not $*$-algebraic operator.
Conversely, let $\mathrm{P} \in \operatorname{ann}\left(\mathrm{H}_{\mathrm{T}, \mathrm{T}^{*}}\right)$

Then $P . v=0 \forall v \in H_{T, T^{*}}$, thus $P\left(T, T^{*}\right) v=$ $0 \forall v \in H$

If T is not $*$-algebraic operator, then $\mathrm{P}=$ 0 . Therefor $\mathrm{H}_{\mathrm{T}, \mathrm{T}^{*}}$ is faithful.

Finally, we study the module of Unilateral shift operator in the following.

Theorem (3.12):

Let U be the Unilateral shift operator on H. then $\mathrm{H}_{\mathrm{U}, \mathrm{U}^{*}}$ is a cyclic R - module .hence a free R-module.

Proof:

Let $\mathrm{w} \in \mathrm{H}_{\mathrm{U}, \mathrm{U}^{*}}$, then
$w=\sum_{l=1}^{m^{\prime}} \sum_{j=0}^{m} \sum_{i=0}^{n} a_{i l} U^{i} U^{* j} e_{l}$
SinceU ${ }^{*}=\mathrm{B}, \mathrm{w}=$
$\sum_{l=1}^{m^{\prime}} \sum_{j=0}^{m} \sum_{i=0}^{n} a_{i l} U^{i} B^{j} e_{l} w=$
$\sum_{l=1}^{m^{\prime}} \sum_{j=0}^{m} \sum_{i=0}^{n} a_{i l} U^{i} e_{l-j}$.[1] $\quad w=$
$\sum_{l=1}^{m^{\prime}} \sum_{j=0}^{m} \sum_{i=0}^{n} a_{i l} U^{i+l-1} U^{-j} e_{1}$. By(2.12)
remark 3,
Thus $w=$ P. e_{1},
where

$$
P(x, y)=
$$

$\sum_{l=1}^{m^{\prime}} \sum_{j=0}^{m} \sum_{i=0}^{n} a_{i l} x^{i+l-1} y^{j}$
Therefore $\mathrm{H}_{\mathrm{U}, \mathrm{U}^{*}}$ is cyclic R-module generated by e_{1}.thus $H_{U, U^{*}}$ is afree R-module. [10]

Corollary (3.13):

Let U be the unilateral shift operator on H . then $H_{U, U^{*}}$ is a faithful R-module.

Proof:

Let
$\mathrm{P}(\mathrm{x}, \mathrm{y})=\sum_{\mathrm{i}=0}^{\mathrm{m}} \sum_{\mathrm{j}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} \mathrm{x}^{\mathrm{i}} \mathrm{y}^{\mathrm{j}} \in \operatorname{ann}\left(\mathrm{H}_{\mathrm{U}, \mathrm{U}^{*}}\right)$
then $P(x, y) . e_{1}=0$
Hence
$\sum_{\mathrm{i}=0}^{\mathrm{m}} \sum_{\mathrm{j}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} U^{\mathrm{i}} \mathrm{B}^{\mathrm{j}} \mathrm{e}_{1}=$
$0, \sum_{\mathrm{i}=0}^{\mathrm{m}} \sum_{\mathrm{j}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} \mathrm{U}^{\mathrm{i}}\left(\mathrm{e}_{1-\mathrm{j}}\right)=0$.[1]
By (2.12) remark 2 we have $\sum_{i=0}^{m} \quad \sum_{j=0}^{n} \quad \mathrm{a}_{\mathrm{ij}} \mathrm{e}_{\mathrm{i}-\mathrm{j}+1}=0$.
But $e_{1}, e_{2}, \ldots, e_{m-n+1}$ are linearly Independent hence $\mathrm{a}_{\mathrm{ij}}=0$
$\forall \mathrm{i}=0,1, \ldots, \mathrm{~m}, j=0,1, \ldots, \mathrm{n}$ thus $P=0$
Therefore $\mathrm{H}_{\mathrm{U}, \mathrm{U}^{*}}$ is a faithful R -module.

References

[1] Salma M Faris, Linear Operators and Modules, A master thesis, College of Science Baghdad, 1994
[2] Sterling K. Berberian, Introduction to Hilbert Space, Chelsa publishing company, New York N.Y, 1961.
[3] Kaplansky I, Infinite abelian groups, The University of Michigan press. Ann Arbor, 1962.
[4] Ahmad Yousefian Darani, Notes on Annihilator conditions in Modules over commutative Rings, An. St. Univ. Ovidius Constanta, 2010.
[5] Halmos P.R, A Hilbert space problem book, springer verlag, New York, Heudelberg Berlin, 1974.
[6] David M Burton, Abstract and linear Algebra, University of Hampshire, 283, 1972.
[7] Hilary Term, Integral Domains, Modules and Algebraic Integers D.R. Wilkins, 2012.
[8] Samira Naji Kadhim, Reflexive Operators on Hilbert Space, Adoctor thesis ,College of Science Baghdad, 2005.
[9] Hilary Term, Integral Domains, Modules and Algebraic Integers Section 2, D.R. Wilkins, 2014.
[10] Kasch F, Modules and rings, Academic Press. London, 1982.

الخلاصة
الموديول التابع للمؤثر T. الذي يرمز له بالرمز
أعطي, عندما V فضاء الجداء الداخلي وT Tؤثر خطي مقيد على V. سندرس في هذا البحث صفات للمؤثر T التي تؤثر
على VT,T* وبالعكس.

