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Abstract 

An associated R-module of 𝑇, which is denoted by 𝑉𝑇,𝑇∗  is given, Where 𝑉 is an inner product 

space and 𝑇 is bounded linear operator on 𝑉. We study in this paper properties of 𝑇 which effects 

𝑉𝑇,𝑇∗ and conversely. 
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1. Introduction 

SALMA M. FARIS in [1] described a  

left R-module 𝑉 where R the polynomials ring 

in x and 𝑉 is vector space as follows:- ∅: 𝑅 ×
𝑉 → 𝑉 by ∅(𝑃, 𝑣) = 𝑃. 𝑣 = 𝑃(𝑇)𝑣 this 

function makes 𝑉 a left 𝑅 −module denoted by 

𝑉𝑇. In this paper we start by introducing a left  

R- module on the ring of polynomials in x, y 

and 𝑉 is an inner product space as follows:- 

𝛹: 𝑅 × 𝑉 → 𝑉 by 𝛹(𝑃, 𝑣) = 𝑃(𝑇, 𝑇∗)𝑣 this 

function makes 𝑉 a left 𝑅 −module and denote 

this module by 𝑉𝑇,𝑇∗ .In proposition (3.2) we 

give form of elements of 𝑉𝑇,𝑇∗. We prove that 

𝑉𝑆,𝑆∗ is isomorphic to 𝑉𝑇,𝑇∗ if and only if 𝑆 is 

similar to 𝑇, we study the relation between the 

*− algebraic elements and the torsion 

elements of 𝐻𝑇,𝑇∗ ,and the module associated 

with the unilateral shift operator we prove that 

𝐻𝑈,𝑈∗ is acyclic R-module. 
 

2. Preliminaries 

In this section the fundamental basic 

concepts and primitive results are Given. 
 

Definition (2.1) [1]: 

Let 𝑉 be a vector space over a field 𝐹. Let 

𝑇 be a linear operator acting on the elements 

of 𝑉 on the left .Let R = F[x] be the ring of 

polynomials in x with coefficients in F . 

Define ∅: 𝑅 × 𝑉 → 𝑉 by ∅(𝑃, 𝑣) = 𝑃. 𝑣 =
𝑃(𝑇)𝑣 .  

It is clear that ∅ makes 𝑉 a left 𝑅-module 

denoted 𝑉𝑇, and call it the associated 

𝑅 −module. 

The form of every element in 𝑉𝑇 is 

illustrated in the following proposition. 
 

Proposition (2.2) [1]: 

If 𝑆 = {𝑉𝑗 ∶ 𝑗 ∈ ᴧ} is a basis for V, then each 

element of 𝑉𝑇  

Can be written in the form 

∑  𝑛
𝑖=0 ∑ 𝑐𝑖𝑗

 
𝑗∈ᴧ 𝑇𝑖𝑣𝑗  , 𝑤ℎ𝑒𝑟𝑒 𝑐𝑖𝑗 ∈ 𝐹 

The symbol ∑  𝑗∈ᴧ  means that the sum is 

taken over a finite subset of ᴧ . 
 

Remark (2.3) [1]: 

VI  is a finitely generated R-module if and 

only if V is a finite dimensional vector space. 

In this remark there is a relation between a 

finite dimensional vector space V and 𝑉𝑇 
 

Remark (2.4) [1]: 

Let 𝑉 be a finite dimensional vector space. 

Let 𝑇 be an operator on 𝑉, then 𝑉𝑇 is a finitely 

generated 𝑅- module. 

Recall that if 𝑇 and 𝑆 two operators on 𝑉.𝑆 

is similar to 𝑇 if there exists an invertible 

operator ℎ on 𝑉 such that ℎ𝑆ℎ−1 = 𝑇 [2]. 
 

Proposition (2.5) [1]: 

Let 𝑇 and 𝑆 be two operators on 𝑉 .Then 𝑉𝑆 

is isomorphic to 𝑉𝑇 if and only if 𝑆 is similar 

to 𝑇. 
 

Definition (2.6) [2]: 

Let 𝑇 be an operator on a vector space. T is 

said to be of finite rank if the image of 𝑇 is 

finite dimensional. 

It is shown in (2.4) that if 𝑉 is a finite 

dimensional vector space, then 𝑉𝑇 is a finitely 

generated 𝑅- module. Also if 𝑉 is finite 

dimensional vector space, and 𝑇 is any 

operator on 𝑉, then 𝑇𝑉 is finite dimensional. 

Hence 𝑇 is of finite rank. Following 

proposition give the converse. 
 

Proposition (2.7) [1]: 
If 𝑇 is of finite rank, and 𝑉𝑇 is finitely 

generated, then 𝑉 is finite dimensional. 
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Definition (2.8) [3]: 
Let 𝑇: 𝑉 → 𝑉 be an operator. 𝑣𝜖𝑉 is said to 

be an algebraic element (or 𝑇-algebraic) if 

there exists a non zero polynomial 𝑃𝜖𝑅 such 

that 𝑃(𝑇)𝑣 = 0. 
𝑇 is said to be algebraic if there exists 𝑃 ≠

0 in 𝑅 such that 𝑃(𝑇)𝑣 = 0 , ∀𝑣 ∈ 𝑉  
 

Proposition (2.9)[1]: 
Let 𝑇: 𝑉 →  𝑉 be an operator. Let  

𝐴 = 𝐴(𝑇) be the set of all 𝑇 −algebraic 

elements. Then 𝐴 is a subspace of 𝑉. 

There is a relation between the 

𝑇 −algebraic elements and the torsion 

elements of 𝑉𝑇 this relation is studied in the 

next proposition.  

Recall that an element m of S-module 

where S is a ring is torsion element if there 

exists 0 ≠ 𝑡 ∈ 𝑆 such that 𝑡𝑚 = 0, 𝑀 is 

torsion 𝑆-module if 𝜏(𝑀) = 𝑀 

where 𝜏(𝑀) the set of all torsion elements .[3] 
 

Proposition (2.10)[1]: 
Let 𝑇 be an operator on 𝑉 ,then 𝐴𝑇 = 𝜏(𝑉𝑇) 

Recall that for any ring 𝑆 and any 

𝑆 −module 𝑀, 𝑎𝑛𝑛 (𝑀) = {𝑡 ∈ 𝑆 ∶ 𝑡𝑚 =
0 , ∀𝑚 ∈ 𝑀 } , and  𝑎𝑛𝑛 (𝑀) = 0 then 𝑀 is a 

faithful 𝑆 −module.[4]. 
 

Proposition (2.11)[1]: 
𝑉𝑇 is faithful 𝑅 −module if and only if 𝑇 is 

not an algebraic operator. 

The module of the Unilateral shift operator 

is given finally. 

Let 𝑈: 𝑙2(𝑅) → 𝑙2(𝑅) be the operator 

defined by 𝑈(𝑥1, 𝑥2, … ) = 𝑈(0, 𝑥1, 𝑥2, … . )  

This operator called the Unilateral shift 

operator.[5] 
 

Remark (2.12)[1]: 

∀𝑖 , 𝐾 ∈ 𝑁 , one can easily see that: 

1. U ek 
= ek+1 2. Uiek = ei+k 3. Uiek =

Ui+k−1e1.  
Recall that a left R-module M is called 

acyclic if M can be generated by a single 

element. 𝑀(𝑥) =  𝑅𝑥 = {𝑟𝑥/𝑟 ∈  𝑅} for some 

𝑥 in 𝑀.  
 

Theorem (2.13)[1]: 

Let 𝑈 be the Unilateral shift operator on 𝐻. 

Then 𝐻𝑈 is a cyclic faithful 𝑅 −module. 

Hence a free 𝑅 −module. 

3. Main Results 

Definition (3.1): 

Let R = F[x, y] be the ring of polynomials 

in x, y with coefficients in F. Let 𝑉 be an inner 

product space over afield F and 𝑇 be a 

bounded linear operator acting on the elements 

of 𝑉 on the left .We will define a left  

R-module on V as follows: 𝛹: 𝑅 × 𝑉 → 𝑉  

by 𝛹(𝑃, 𝑣) =  𝑃(𝑇, 𝑇∗)𝑣 i.e P(x, y) =
∑  m

i=0 ∑  n
j=0 aijx

iyj , aij ∈ F . [6] It is clear that 

Ψ makes V a unitary left R –module. We shall 

denote this module by VT,T∗. 

In the following proposition we introduce 

the form of each element of VT,T∗. 
 

Proposition (3.2): 

If S= {𝑣𝑙: 𝑙 ∈ ᴧ} is a basis for 𝑉. then each 

element of VT,T∗ can be Written in the form 

∑  𝑚
𝑗=0 ∑  ∑   

𝑙∈ᴧ
𝑛
𝑖=0 𝑐𝑖𝑙𝑇

𝑖𝑇∗𝑗
𝑣𝑙  , 𝑐𝑖𝑙 ∈ 𝐹  

The symbol ∑   
l∈ᴧ  means that the sum is 

taken over a finite subset of ᴧ 
 

Proof:- let w ∈  VT,T∗ , then  

w = ∑ Pk
 m′

k=1 ∙ wk , where  

Pk(x, y) = ∑  (

 m

j=0

Pk (x)) yj , 

 Pk(x) = ∑ aik
nk
i=0 xi  

 Pk(x, y) = ∑  (m
j=0 ∑ aikxink 

i=0 ) yj  ∈ R  

 𝑤𝐾 = ∑ 𝑏𝐾𝑙𝑣𝑙 ∈ 𝑉 
𝑙∈ᴧ  ,then  

𝑤 = ∑  

𝑚′

𝑘=1

∑  

𝑚

𝑗=0

(∑ 𝑎𝑖𝑘

𝑛𝑘

𝑖=0

𝑇𝑖
 𝑇

∗𝑗
) (∑  

 

𝑙∈ᴧ

𝑏𝑘𝑙𝑣𝑙) 

 Let n = max  {n1, n2, ⋯ , nm} , aik = 0 , ∀i >
nk , k =1,2, ⋯ , m′ 

Then w =

∑  m
j=0 ∑ aik 

n
i=0 TiT∗j

(∑  𝑚′

𝑘=1 ∑ 𝑏𝑘𝑙𝑣𝑙
 
𝑙∈ᴧ )  

=∑  m
j=0 ∑ TiT∗jn

i=0 (∑ ∑  𝑚′

𝑘=1 𝑎𝑖𝑘𝑏𝑘𝑙𝑣𝑙) 
𝑙∈ᴧ   

=∑  m
j=0 ∑  TiT∗jn

i=0 (∑ 𝑐𝑖𝑙𝑣𝑙
 
𝑙∈ᴧ ) 

Where 𝑐𝑖𝑙 = ∑  𝑚′

𝑘=1 𝑎𝑖𝑘𝑏𝑘𝑙 

Thus w = ∑  m
j=0  ∑  n

i=0 ∑   
𝑙∈ᴧ 𝑐𝑖𝑙𝑇

𝑖 𝑇∗𝑗
𝑣𝑙 

 

Examples (3.3): 

1. Let {𝑣𝑙: 𝑙 ∈ ᴧ} be abasis for an inner product 

space V. 

(a) Let 0 be the zero operator on V .If w ∈
V0,0∗ then by proposition (3.2) 
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𝑤 = ∑ ∑  ∑   
𝑙∈ᴧ 𝑐𝑖𝑙0

𝑖0∗𝑗
 , 𝑐𝑖𝑙 ∈ 𝐹 .𝑛

𝑖=0
𝑚
𝑗=0  Recall 

that 00 = I, then 𝑤 = ∑ 𝑐0𝑙𝑣𝑙
 
𝑙∈ᴧ  

 

(b) Let I be the Identity operator on V.If 

 w ∈  VI,I∗  then by proposition (3.2) 

, 𝑤 = ∑  𝑚
𝑗=0 ∑  𝑛

𝑖=0 ∑   
𝑙∈ᴧ 𝑐𝑖𝑙𝐼

𝑖𝐼𝑗𝑣𝑙  

put 𝑐𝑙 = ∑  𝑛+𝑚
𝑖+𝑗=0 𝑐𝑖𝑙  

Then 𝑤 = ∑   
𝑙∈ᴧ 𝑐𝑙 

 𝑣𝑙 
 

2. Let T be a bounded linear operator on a 

Hilbert space. 

(a) T is a Self –adjoint operator, 

if T = T∗ .[2] 

Then by proposition (3.2) 

 𝑤 = ∑  𝑛+𝑚
𝑖+𝑗=0 ∑   

𝑙∈ᴧ 𝑐𝑖𝑙𝑇
 𝑖+𝑗

𝑣𝑙 

 

(b) 𝑇 is Normal operator ,if TT∗=T∗T .[2] 

Then by proposition (3.2) , 

w = ∑  m
j=0  ∑  𝑛

𝑖=0 ∑   
𝒍∈ᴧ 𝑐𝑖𝑙T

∗i
Tj𝑣𝒍  

 

Remark (3.4): 

 VI,I∗
 is a finitely generated 𝑅 −module if 

and only if V is a finite dimensional an inner 

product space. 

 

Proof:  

Let VI,I∗  is finitly generated 𝑅 −module 

with generators {u1,u2,…,um} we prove by 

contradiction suppose that V is not finite 

Dimensional. Let {𝑒 𝑙 ∶ 𝑙 ∈ ᴧ } be a basis for V 

by Ex :1.(b) ,uj ∈  V  

 uj = ∑ ckek kϵᴧ ,j=1,2,…,m . Thus VI,I∗  can be 

generated by a finite number of elements of 

the set {𝑒𝑙: 𝑙 ∈ ᴧ } , say, {e1,e2,...,en} 

Therefore if 𝐾 ˃𝑛 then ek=∑  Pt . et
m
t=1  

Where 𝑃𝑡(x, y) = ∑  𝑛
𝑖=0

 
(∑ atj

 kt
j=0 xj)yi  

ek = ∑  m
t=1 ∑  (∑ atj

kt
j=0

n
i=0  x j )yi .  et  

= ∑ atjet

kt 

j=0

  

 Put at = ∑ atj
kt
j=0  

then pt . et=at .et ,t=1,2,…,m 

Therefore , ek=∑ atet
n
t=1  

Which is a contradiction, thus V is a finite 

dimensional an inner product space. 

Assume V is an n-dimensional normed space 

with basis { v1,  v2, … , v n}. Let 𝑤 ∈   𝑉 𝐼,𝐼∗  by 

Ex:1.(b) w= ∑ 𝑐𝑙𝑣𝑙
𝑛
𝑙=1   

This shows that VI,I∗     is a finitely generated 

𝑅 −module. 

Compare the following with proposition (2-5) 
 

Proposition (3.5): 

Let T, S be two bounded operators on 

V.then VS,S ∗  and VT,T∗ are isomorphic  

R-module iff S and T are similar. 
 

Proof:  

If VS,S∗ is isomorphic to VT,T∗  

 Let h: VS,S∗ → VT,T∗ be an R-isomorphisim 

Thus h(w1 + w2) = h( w1) +
h(w2) , ∀w1,w2 ∈ V S,S∗  

 h(P(x, y) ∙ w) = P(x, y) ∙ h(w) , ∀ P ∈ R, w ∈
VS,S∗   
 i.e h is homomorphisim .then we can define h 

as: 

h[P(S , S∗)w] = P(T, T∗)h(w) 
If 𝑃 is a constant polynomial a, a ∈ F, then 

h(av) = ah(v) 
Thus h is a linear operator call it again h, if 

P(x, y) = x + y 
Then h(P(x, y)w) = P(x, y)h(w) 
h((x + y)w) = (x + y) h(w) 
h(S + S∗) = (T + T∗)h 
hSh−1  + hS∗h−1  = h −1Th + h−1 T∗h 
Then hSh−1  = T , hS∗h−1 = T∗  
Then S is similar to T 

 

If S and T are similar then there exists an 

operator h on V s.t  

h(S + S∗)h−1 = T + T∗ it is easy to cheack 

that  
 

hP(S, S∗ ) = P(T, T∗)h ∀P ∈ R  ................... (1) 

 

Define h′: VS,S∗ → VT,T∗  
By  h′ [P(S, S∗)v] = P(T, T∗)h(v)    ............ (2) 
 

If P1(S, S∗)v1= P2(S, S∗)v2 

Then h[P1(S, S∗)v1] = h[P2(S, S∗)v2]  
(since h operator) 

Then by  

(1) P1(T, T∗)h( v1) = P2(T, T∗)h(v2)  
By  

(2) h′[P1(S, S∗)v 1] = h′[P2(S, S∗)v 2].thus h′ 
is well define. 

If h′[P (S, S∗)v] = 0 , 

then P(T, T∗)h(v)=0  

By (1) hp(S, S∗)v = 0 but h is invertible then 

p(S, S∗) v = 0 
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Therefore h′ is 1-1 

Let P(T, T∗)v ∈  VT,T∗ since v ∈ V 

Then h −1 (v) ∈ V and P(S, S∗)h−1(v) ∈  V S,S∗ 
 

h′[P(S, S∗)h −1(v)] = P (T, T∗)hh −1(v) =
P(T, T∗)v  

 

Thus h' is on to  

Note h′[P(S, S∗)v] = h[P(S, S∗)v] ,but h is an 

operator, hence  

h′ is an R-homomorphism, therefore h′ is an 

R-isomorphism. 
 

Remark (3.6): 

If 𝑉 is a finite dimensional an inner product 

space, then VT,T∗ is finitely generated  

R-module.  

We show in (3.6) that if V is a finite 

dimensional an inner product space, then VT is 

finitely generated R-module, also if 𝑉 is finite 

dimensional and 𝑇 is any operator on 𝑉, then 

𝑇𝑉 is finite dimensional, hence 𝑇 is of finite 

rank. 
 

Proposition (3.7): 

If T is of finite rank, and VT,T∗ is finitely 

generated, then V is finite dimensioal. 

 

Proof: 

Let K = K(T T∗) = {w ∈ V: TT∗w = 0} it 

is clear that K is an invariant subspaces of V, 

and TT∗ V ≅
V

K
 

We prove by contradiction way .Assume V 

is not finite dimensional. TT∗V is finite 

dimensional since T is finite rank,thus K must 

be infinite dimensional but K is an invariant 

subspace of V,then the submodule KT,T∗ is 

generated by the set {TiT∗j
wl: l ∈ ᴧ; 

i = 0,1, ⋯ ; j = 0,1, ⋯ } where {wl: l ∈ ᴧ} is 

abasis for K.wl ∈ k means that T  T∗wl =
0 .Hence the restriction of T T∗ on K is the 

zero operator,thus KT,T∗ = K0,0∗ by (3.2) KT,T∗ 

cannot be finitely generated, and since R 

Noetherian [7] ,VT,T∗ is finitely generated then 

KT,T∗ is finitely generated .this contradiction 

shows that V is finite dimensional. 
 

Definition (3.8) [8]: 

An operator T ∈ B(H) is said to be  

*-algebraic operator if there exists non-zero 

polynomial of two variables 𝑃 such that 

P(T, T∗)x = 0 , ∀𝑥 ∈ 𝐻 . 𝑥 ∈ 𝐻 is called  

*-algebraic element if there exists non zero 

polynomial of two variables 𝑃 such that 

P(T, T∗)x = 0.  
 

Proposition (3.9): 

Let T: H → H and A = A(T, T∗) be the set 

of all *-algebraic elements then A is a 

subspace of H. 
 

Proof: 

Let u, v ∈ A then there exist non-zero 

polynomial p,q inR such that 

P(T, T∗)u = 0 and q(T, T∗) v = 0, then 

 P(T, T∗ )q(T, T∗)(u+v)=0 

Since R = F[x, y] is an integral domain [9], 

hence Pq ≠ 0, therefore 

u + v ∈ A if a ∈ F then P(T, T∗)au =
aP(T, T∗)u = 0 thus au ∈ A therefore A 

subspace of H.  
 

Proposition (3.10):  
Let T be an operator on H, then 

AT,T∗ = τ( HT,T 
∗)  

 

Proof:  

let 0 ≠ w ∈ AT,T∗  . then w =  ∑ Pi 
n
i=0  vi for 

some Pi ∈ R , vi  ∈  A ∀i  
There exists qi ≠ 0 in R such that 

qi(T, T∗)vi = 0  
henceq(T, T∗) w = q. w = 0 where q =

q1q2 ⋯ qnThus w ∈ τ( HT,T∗) 

And let u ∈ τ(H),then there exists P ≠ 0 in R 

Such that P. u = 0 therefore P(T, T∗)u =
0 , thus u ∈ AT,T∗ 

Therefore AT,T∗ = τ(HT,T∗) 

In the following proposition we give the 

relation between faithful R-module and  

*-algebraic operator. 
 

Proposition (3.11 ): 

HT,T 
∗ is a faithful 𝑅 −module if and only if 

𝑇 is not *-algebraic operator. 
 

Proof: 

Let P ∈ R such that P(T, T∗)v = 0 ∀v ∈ H 

Then P. 𝑣 = 0 ∀𝑥 ∈ 𝐻 . Thus P. v = 0 ∀v ∈
HT,T∗ hence P ∈ ann(HT,T∗) 

Therefor 𝑃 = 0 and 𝑇 is not *-algebraic 

operator.  

Conversely, let P ∈ ann (HT,T∗ ) 



Journal of Al-Nahrain University                   Vol.19 (1), March, 2016, pp.168-172                                           Science 

172 

Then P . v = 0 ∀v ∈ HT,T∗  , thus P(T , T∗)v =

0 ∀v ∈ H   
If 𝑇 is not *-algebraic operator, then    P =

0. Therefor HT,T∗is faithful.  

Finally, we study the module of Unilateral 

shift operator in the following. 
 

Theorem (3.12) : 

Let U be the Unilateral shift operator on H. 

then HU,U∗ is a cyclic 𝑅- module .hence a free 

𝑅-module.  
 

Proof: 

Let w ∈ HU,U∗, then 
 

 𝑤 =  ∑  𝑚′

𝑙=1 ∑  𝑚
𝑗=0 ∑ 𝑎𝑖𝑙𝑈

𝑖𝑈∗𝑗𝑒𝑙
𝑛  
𝑖=0  

SinceU∗ = B , w =

∑  𝑚′

𝑙=1 ∑  𝑚
𝑗=0 ∑  𝑛

𝑖=0 𝑎𝑖𝑙𝑈𝑖𝐵𝑗𝑒𝑙 𝑤 =

∑  𝑚′

𝑙=1 ∑  𝑚
𝑗=0 ∑  𝑛

𝑖=0 𝑎𝑖𝑙𝑈𝑖𝑒𝑙−𝑗.[1] 𝑤 =

∑  𝑚′

𝑙=1 ∑  𝑚
𝑗=0 ∑  𝑛

𝑖=0 𝑎𝑖𝑙𝑈𝑖+𝑙−1𝑈−𝑗𝑒1. By( 2.12) 

remark 3, 

Thus w = P. e1,  

where 𝑃(𝑥, 𝑦) =

∑  𝑚′

𝑙=1 ∑  𝑚
𝑗=0 ∑  𝑛

𝑖=0 𝑎𝑖𝑙𝑥𝑖+𝑙−1𝑦𝑗 

 

Therefore HU,U∗ is cyclic R-module generated 

by e1.thus 𝐻𝑈,𝑈∗ is afree 𝑅-module. [10] 
 

Corollary (3.13): 

Let U be the unilateral shift operator on H. 

then 𝐻𝑈,𝑈∗ is a faithful 𝑅-module. 
 

Proof: 

Let  

P(x, y) = ∑  m
i=0 ∑  n

j=0 aijx
iyj  ∈ ann (HU,U∗) 

then P(x, y). e1=0 

Hence  

∑  m
i=0 ∑  n

j=0 aijU
iBje1 =

0, ∑  m
i=0 ∑  n

j=0 aijU
i(e1−j ) = 0 .[1] 

By (2.12) remark 2 we have 

∑  m
i=0 ∑  n

j=0 aijei−j+1 = 0.  

But e1, e2, … , em−n+1  are linearly 

Independent hence aij = 0  

∀i = 0,1, …,m , 𝑗 = 0,1, …,n thus 𝑃=0 

Therefore HU,U∗  is a faithful R-module. 
 

References 

[1] Salma M Faris, Linear Operators and 

Modules, A master thesis, College of 

Science Baghdad, 1994 

[2] Sterling K. Berberian, Introduction to 

Hilbert Space, Chelsa publishing company, 

New York N.Y, 1961. 

[3] Kaplansky I, Infinite abelian groups, The 

University of Michigan press. Ann Arbor, 

1962. 

[4] Ahmad Yousefian Darani, Notes on 

Annihilator conditions in Modules over 

commutative Rings, An. St. Univ. Ovidius 

Constanta, 2010. 

[5] Halmos P.R, A Hilbert space problem 

book, springer verlag, New York, 

Heudelberg Berlin, 1974. 

[6] David M Burton, Abstract and linear 

Algebra, University of Hampshire, 283, 

1972. 

[7] Hilary Term, Integral Domains, Modules 

and Algebraic Integers D.R. Wilkins, 2012. 

[8] Samira Naji Kadhim, Reflexive Operators 

on Hilbert Space, Adoctor thesis ,College 

of Science Baghdad, 2005. 

[9] Hilary Term, Integral Domains, Modules 

and Algebraic Integers Section 2, D.R. 

Wilkins, 2014. 

[10] Kasch F, Modules and rings, Academic 

Press. London, 1982. 

 

 الخلاصة
 ∗VT,T. الذي يرمز له بالرمزTالموديول التابع للمؤثر 

مؤثر خطي مقيد T و الجداء الداخليفضاء  V عندما أعطي,
التي تؤثر  T. سندرس في هذا البحث صفات للمؤثر V على
 .وبالعكس ∗VT,T على

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


