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Abstract 
The aim of this paper is to study the effect of magnetic hydrodynamic (MHD) on unsteady flow 

of Maxwell fluid with fractional derivative due to a constant acceleration plate. The fractional 

calculus process is introduced to establish the constitutive relationship of fluid model, by using 

Laplace transform and Fourier sine transform, we obtained closed solutions for velocity field and 

shear stress. Lastly, the solutions are present by integral and series form in terms of the generalized 

G and R functions. The influence of the parameters on the velocity field spotlighted by means of the 

several graphs. 
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Introduction 

Now the most ofscientists and engineers 

have a great interest to real fluids that does not 

exhibit a linear relationship between stress and 

rate of strain, this attraction has mature 

considerably throughout the past few decades 

because of their varied applications in industry 

and engineering,these applications ranges from 

oil and well drilling to well completion 

operation,from technique involving waste 

fluids, synthetics fibers, extrusion of liquid 

plastic, artificial, exotic lubricants and natural 

gels and additionally as some flows of 

compound solutions,several fluids including 

with butter, cosmetics and toiletries, paints, 

soaps, oils, blood, shampoo fluids including 

withcosmetics and toiletries, butter, paints, 

soaps, oils, blood, shampoo and marmalades 

have rheological characteristics and are stated 

as the non-Newtonian fluids and marmalades 

have rheological characteristics and are stated 

as the non-Newtonian fluids, the rheological 

properties of those fluids cannot be explained 

by using a single constitutive relationship 

between stress and shear rate that is kind of 

different than the viscous fluids, the modeling 

of equations governing the non-Newtonian 

fluids provides rise to actuallynonlinear 

differential equations, generally physics 

properties of materials are such by their so 

known as constitutive equations, the only 

constitutive equation for a fluid isa Newtonian 

one, and the classical Navier - Stokes theory is 

based, the mechanical behavior of the many 

fluids is drawn by this theory [1-4], in general, 

the classification of the non-Newtonian fluid 

models is given below by three classes that are 

known as differential, integral and rate in 

general, the classification of the non-

Newtonian fluid models is given below by 

three classes that are known as differential, 

integral and rate varieties, among them, the 

viscoelastic rate type model, that is used wide, 

is the Maxwell model, among them, the 

viscoelastic rate type model, that is used wide, 

is the Maxwell model.[5]  

Fractional calculus has encountered much 

success within the description of the 

complicated dynamical systems [6]. The 

begining point of the fractional derivative 

model of viscoelastic fluid is often a classical 

differential equation a classical equation that is 

modified by substitution the time derivative of 

an integer order by the Riemanm - Liouville 

fractional calculus operator. 

This generalization permits one to outline 

precisely non-integer order integrals or 

derivatives a very sensible agreement is 

achieved with experimental knowledge once 

the fractional Maxwell model is utilized with 

its initial order derivatives replaced by the 

fractional– order derivatives [7]. 

In recent years, the interest in unsteady flow 

of such a viscoelastic fluid with fractional 

derivative Maxwell model has magnified 

considerably and plenty of exact solutions are 

determined [8-12]. Khan[13],discussed some 

exact solutions for fractional generalized 
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Burgers’ fluid in porous space. Xue and Nie 

[14] studied the exact solutions of Rayleigh – 

stokes problem for heated generalized 

Maxwell fluid in a porous half –space. Zheng 

et al [15] discussed the exact solution for 

MHD flow of generalized Oldroyd-B fluid.  

C.Fetecau [16] discussed the exact solutions 

for the unsteady flow of a viscoelastic fluid 

with fractional derivative Maxwell model 

produced by an infinite constantly accelerating 

plate. In the present work, we have to study 

the effect MHD of unsteady flow of a 

generalized Maxwell fluid with fractional 

derivative because of a constantly accelerating 

plate. The precise solutions for the velocity 

field and shear stress are obtain by using the 

Fourier sine transform and discrete Laplace 

transform. 

 

1-Description of the problem:- 

Consider an incompressible Maxwell fluid 

with fractional derivative which is, also known 

as generalized Maxwell fluid (GMF) lying 

over associate degree of infinite flat plate. At 

first  ,the fluid is at rest and at time t=0+ the 

infinite plate begins to slide in its plane with 

the velocity (At),where A is a constant due to 

the shear, and the fluid higher than the plate is 

step by step moved. The associated boundary 

and initial conditionare 
 

𝑈(𝑦, 𝑡),
𝜕𝑈(𝑦,𝑡)

𝜕𝑦
→ 0 𝑎𝑠 𝑦 → ∞ , 𝑡 > 0  ................. (1) 

𝑈(𝑦, 0) =
𝜕𝑈(𝑦,0)

𝜕𝑡
= 0, 𝑦 > 0  ............................... (2) 

𝑈(0, 𝑡) = 𝐴𝑡 , 𝑡 ≥ 0  ............................................. (3) 
 

In order to solve the problem under 

consideration, we shall use the Fourier sine 

and Laplace transformation. 

 

2- Governing equations:- 

The constitutive equations for associate 

incompressible Maxwell fluid with fractional 

derivative is given by 
 

𝑇 = −𝑝𝐼 + 𝑆  ............................................... (4) 
 

Where T is Cauchy stress tensor, p is a 

pressure and I is an identity tensor, and 
 

𝑆 + 𝜆(𝐷𝑡
𝛼𝑆 + 𝑉. 𝛻𝑆 − 𝐿𝑆 − 𝑆𝐿𝑇)  = 𝜇 𝐴  ........... (5) 

 

Where S is that the additional – stress 

tensor, V is that the velocity vector, L is that 

the velocity gradient, A = L+LT is that the first 

Rivlin–Ericksen tensor, is that the gradient 

operator,λ is that the relaxation time, µ is that 

the dynamic viscosity and Dt
α is that the 

Riemann-Liouville fractional differential 

operator oforder α with respect to twhich in 

defined as  
 

𝐷𝑡
𝛼𝑓(𝑡) =

1

𝛤(1−𝛼)

𝑑

𝑑𝑡
∫

𝑓(𝜏)

(𝑡−𝜏)𝛼

𝑡

0
𝑑𝜏 , 0 < 𝛼 ≤ 1  ....... (6) 

 

Where Γ(.) is the Gamma function.This 

model reduces to the standard Maxwell model 

when α=1 and therefore the Newtonian model 

once α=1 and λ=0. 

For the problem under consideration, we 

have a tendency to get a velocity field of the 

form  
 

𝑉 = 𝑉(𝑦, 𝑡) = 𝑈(𝑦, 𝑡)𝑖,  .............................. (7) 
 

Where U(y,t) is that the velocity at intervals 

the x-coordinate direction which i is that the 

unit vector within the same direction. For this 

velocity field.Consider that the conducting 

fluid is permeated by an imposedmagnetic 

field B zero that acts in the positive  

y- coordinate .in the low-magnetic Reynolds 

number approximation, the magnetic body 

force is represented by 𝜎𝐵0
2,where σ is that the 

electrical conductivity of the fluid. 

Substituting Eq(7) into the Eq(4),Eq(5) and 

taking in to account the initial condition: 
 

𝑆(𝑦, 0) = 0 , 𝑦 > 0  ............................................... (8) 
 

Such thatthe fluid being at rest up to the 

time t=0, we have𝑆𝑦𝑦 = 𝑆𝑧𝑧 = 𝑆𝑥𝑧 = 𝑆𝑦𝑧 =

0and 𝑆𝑥𝑦 = 𝑆𝑦𝑥,we get  
 

(1 + 𝜆𝐷𝑡
𝛼)𝜏(𝑦, 𝑡) = 𝜇

𝜕

𝜕𝑦
𝑈(𝑦, 𝑡),  ........................ (9) 

 

Where τ (y,t) =Sxy(y,t) is that the shear 

stress that is all totally different of zero,in the 

absence of body forces and a pressure gradient 

at intervals the flow direction,the balance of 

momentum finishes up within the relevant 

equation  
 

𝜌 
𝜕𝑈(𝑦,𝑡)

𝜕𝑡
=

𝜕

𝜕𝑦
𝜏(𝑦, 𝑡) ........................................... (10) 

 

Wherever ρ is that the constant density of 

the fluid. 

Eliminating τ(y,t) betweenEq(9)and 

Eq(10),we findthe governing equation 
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(1 + 𝜆 𝐷𝑡
𝛼)

𝜕𝑈(𝑦,𝑡)

𝜕𝑡
= 𝜈

𝜕2𝑈(𝑦,𝑡)

𝜕𝑦2
− 𝑀 𝑈(𝑦, 𝑡) ...... (11) 

 

Wherever ν = µ/ρ is the kinematic viscosity  

of the fluid and 


 2

0B
M   

 

3-Calculation of the velocity field:- 

The velocity field can be obtained 

bymultiplying both sides of Eq(11) by 

)sin(/2  y integrating then with respect to 

y from 0 to ∞ and having in mind the initial 

and boundary conditions (1),(2)and (3), we 

find that 
 

(1 + 𝜆𝐷𝑡
𝛼)

𝜕𝑈𝑠(𝜉,𝑡)

𝜕𝑡
+ 𝜈𝜉2𝑈𝑠(𝜉, 𝑡) = 𝜈𝐴𝜉𝑡√

2

𝜋
−

𝑀𝑈𝑠(𝜉, 𝑡) ............................................................. (12) 
 

Where the Fourier sine transform of U(y,t) 

has to satisfy the conditions  
 

𝑈𝑠(𝜉, 0),
𝜕𝑈(𝜉,0)

𝜕𝑡
= 0 𝑓𝑜𝑟, 𝜉 > 0  ......................... (13) 

 

Applying the Laplace transform to Eq(12) 

and using the Laplace transform formula for 

serial fractional derivatives [6], we acquire the 

image function ),(),( tUofqU ss   below the 

shape 
 

𝑈̅𝑠(𝜉, 𝑞) = √
2

𝜋

𝜈𝐴𝜉

𝑞2(𝜆𝑞𝛼+1+𝜈𝜉2+𝑞+𝑀)
 ....................... (14) 

 

In order to get ),(),( 1 qULtU ss   and to 

avoid the long calculations of residues and 

contour integrals, we tend to apply the distinct 

inverse Laplace transform technique 

.However, for a additional appropriate 

presentation of the ultimate results, we first 

rewrite Eq(14) within the equivalent forms 
 

𝑈𝑠̅(𝜉, 𝑞) = 𝐴√
2

𝜋

1

𝜉𝑞2
−

𝐴 𝜈𝜉√
2

𝜋

1+𝜆𝑞𝛼+𝑀𝑞−1

𝑞𝜈𝜉2(𝜆𝑞𝛼+1+𝜈𝜉2+𝑞+𝑀)
= 𝐴√

2

𝜋

1

𝜉𝑞2
−

𝜈𝜉√
2

𝜋
(

1

(𝑞+𝜈𝜉2)𝑞𝜈𝜉2
) −

𝐴𝜉𝑣√
2

𝜋

𝜆𝑞𝛼−1+𝑀

(𝑞+𝜈𝜉2)(𝑞+𝜆𝑞𝛼+1+𝜈𝜉2+𝑀)
 ........................... (15) 

 

The second factor of the last term of 

Eq.(15)can be written within the sort of a 

double series,(see Appendix (A1)). 

 

𝜆𝑞𝛼−1 + 𝑀

𝑞 + 𝜆𝑞𝛼+1 + 𝜈𝜉2 + 𝑀

= ∑
(−1)𝛾

𝜆𝛾+1

∞

𝛾=0

∑
𝛾!

𝑖! 𝑗!

𝑞𝑖𝑀𝑗(𝜆𝑞𝛼−1 + 𝑀)

(𝑞𝛼+1 +
𝜈𝜉2

𝜆
)
𝛾+1

𝑖+𝑗=𝛾

𝑖,𝑗≥0

 

We obtain, 

 

(𝜉, 𝑞)

= 𝐴√
2

𝜋

1

𝜉𝑞2
− 𝐴𝜈𝜉√

2

𝜋
(

1

(𝑞 + 𝜈𝜉2)𝑞𝜈𝜉2
)

− 𝐴𝜉𝑣√
2

𝜋

1

𝑞 + 𝜈𝜉2
∑

(−1)𝛾

𝜆𝛾+1

∞

𝛾=0

∑
𝛾!

𝑖! 𝑗!

𝑖+𝑗=𝛾

𝑖,𝑗≥0

 

 

𝑞𝑖𝑀𝑗(𝜆𝑞𝛼−1+𝑀)

(𝑞𝛼+1+
𝜈𝜉2

𝜆
)
𝛾+1  ........................................................ (16) 

 

Inverting the result by means that of the 

Fourier sine formula [17],we get that 
 

𝑈̅(𝑦, 𝑞)

=
𝐴

𝑞2
−
2𝐴𝜈

𝜋
∫ (

1

(𝑞 + 𝜈𝜉2)𝑞𝜈𝜉2
)

∞

0

sin(𝑦𝜉) 𝑑𝜉

−
2𝐴𝜈

𝜋
∫

𝜉 sin(𝜉𝑦)

𝑞 + 𝜈𝜉2
∑

(−1)𝛾

𝜆𝛾+1

∞

𝛾=0

∞

0

∑
𝛾!

𝑖! 𝑗!

𝑖+𝑗=𝛾

𝑖,𝑗≥0

 

(𝐺1(𝑞)(𝜆𝑀
𝑗) + 𝐺2(𝑞)𝑀

𝑗+1)𝑑𝜉 ......................... (17) 
 

Where [18], 

𝐺(𝑞) =
𝑞𝑏

(𝑞𝑎−𝑑)𝑐
= 𝑞𝑏−𝑎𝑐(1 −

𝑑

𝑞𝑎
)−𝑐 , 𝑅𝑒(𝑎𝑐 − 𝑏) >

0,  .......................................................................... (18) 
 

With a1=α+1,b1=α-i+1,a2==α+1,b2=i, and 

c1=c2=k+1 are not constrained to be integers 

and d1= d2= - ν ξ2/ λ, using the binomial 

theorem, we can also write 
 

𝐺(𝑞) = ∑
Γ(1 − 𝑐)𝑞𝑏−𝑎𝑐−𝑎𝑠

Γ(𝑠 + 1)Γ(1 − 𝑠 − 𝑐)
(−𝑑)𝑠  𝑖𝑓 |𝑑|

∞

𝑠=0

> |𝑞𝑎| 
 ................................... (19) 

 

This last expression may be term by term 

inverse transformed, yielding [18] 
 

𝐺𝑎,𝑏,𝑐 (
−𝜈𝜉2

𝜆
, 𝑡) = 𝐿−1{𝐺(𝑞)} =

∑
Γ(1−𝑐)𝑞(𝑐+𝑠)𝑎−𝑏−1

Γ(𝑠+1)Γ((𝑐+𝑠)𝑎−𝑏)
(
𝜈𝜉2

𝜆
)
𝑠

∞
𝑠=0  ............................... (20) 
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If Re ((-b)+ac)) > 0, Re(q) > 0 and|𝑞𝑎| >
𝜈𝜉2

𝜆
 the form of Eq(20) presents analysis 

difficulties,since once c is associate integer, 

Γ(1-c) and Γ(1-s-c) will become infinite. 

However, it may be rewritten within the 

following calculable from [18], 
 

𝐺𝑎,𝑏,𝑐 (
−𝜈𝜉2

𝜆
, 𝑡)

= ∑
(𝑐)𝑠𝑞

(𝑐+𝑠)𝑎−𝑏−1

Γ(𝑠 + 1)Γ((𝑐 + 𝑠)𝑎 − 𝑏)
(
−𝜈𝜉2

𝜆
)

𝑠∞

𝑠=0

 

 ................................... (21) 
 

Where (c )s is the Pochhammer Polynomial. 

Finally, applying the inverse Laplace 

transform to Eq(17) and taking under 

consideration all the previous results and 

useproperty (A3),it is not difficult to point out 

that 

 

𝑈(𝑦, 𝑡) = 𝐴𝑡 −
2𝐴

𝜋𝜈
∫(1

∞

0

− 𝐸𝑥𝑝(−𝜈𝜉2𝑡))
sin(𝑦𝜉)

𝜉3
𝑑𝜉

−
2𝐴𝜈

𝜋
∫ 𝜉 sin(𝑦𝜉) ∫ 𝐸𝑥𝑝(−𝜈(𝑡

𝑡

0

∞

0

− 𝛿)𝜉2)  

× ∑
(−1)𝛾

𝜆𝛾+1

∞

𝛾=0

∑
𝛾!

𝑖! 𝑗!

𝑖+𝑗=𝛾

𝑖+𝑗≥0

∑ (
𝜈𝜉2

𝜆
)

𝑤∞

𝑤=0

 

Γ(1 − (𝛾 + 1))

Γ(𝑤 + 1)Γ(1 − 𝑤 − (𝛾 + 1))
 

(
𝛿𝛼𝛾+𝛼𝑤+𝛼+𝛾+𝑤−𝑖

Γ(𝛼𝛾+𝛼𝑤+𝛼+𝛾+𝑤−𝑖+1)
𝑀𝑗+1 +

𝛿𝛼𝛾+𝛼𝑤+𝛾+𝑤−𝑖+1

Γ(𝛼𝛾+𝑤𝛼+𝛾+𝑤−𝑖+2)
𝜆𝑀𝑗) 𝑑𝛿𝑑𝜉  ........................... (22) 

 

Or equivalently 
 

𝑈(𝑦, 𝑡) = 𝑈1(𝑦, 𝑡) −
2𝐴𝜈

𝜋
∫ 𝜉 sin(𝑦𝜉)

∞

0

 

∫Exp(−ν(t − δ)ξ2)∑
(−1)γ

λγ+1

∞

γ=0

t

0

∑
γ!

i! j!

i+j=γ

i+j≥0

 

∑(
𝜈𝜉2

𝜆
)𝑤

∞

𝑤=0

Γ(1 − (𝛾 + 1))

Γ(𝑤 + 1)Γ(1 − 𝑤 − (𝛾 + 1))
 

(

 
 

𝛿𝛼𝛾+𝛼+𝑤𝛼+𝛾+𝑤−𝑖

𝛤(𝛼𝛾 + 𝑤𝛼 + 𝛼 + 𝛾 + 1 + 𝑤 − 𝑖)
𝑀𝑗+1

+
𝛿𝛼𝛾+𝑤𝛼+𝛾+1+𝑤−𝑖

𝛤(𝛼𝛾 + 𝑤𝛼 + 𝛾 + 𝑤 − 𝑖 + 2)
𝜆𝑀𝑗

)

 
 

 

 𝑑𝛿𝑑𝜉  ................................................................... (23) 

 

Where [19], 
 

𝑈1(𝑦, 𝑡) = 𝐴𝑡 −
2𝐴

𝜋𝜈
∫

(1−𝐸𝑥𝑝(−𝜈𝜉2𝑡))sin(𝑦𝜉)

𝜉3

∞

0
𝑑𝜉 =

4𝐴𝑡𝑖2𝐸𝑟𝑓𝑐 (
𝑦

2√𝑡𝜈
), ............................................... (24) 

 

Appear the velocity field comparable to a 

Newtonian fluid and Erfc(.) isthe integrals of 

the complementary Error function of 

Gauss[19]. 

 

4-Calculation of the shear stress:- 

Applying the Laplace transform to Eq(9) 

and using the initial condition Eq (8),we get 
 

𝜏(̅𝑦, 𝑞) = 𝜇 (
1

1+𝜆 𝑞𝛼
𝜕𝑈̅(𝑦,𝑞)

𝜕𝑦
) ................................ (25) 

 

Where, the differentiation of Eq.(17) with 

respect to y,we get 

 
 

𝜕𝑈̅̅̅̅ (𝑦, 𝑞)

𝜕𝑦
 

= −
2𝐴𝜈

𝜋
∫ (

1

(𝑞 + 𝜈𝜉2)𝑞𝜈𝜉2
)

∞

0

𝜉𝑐𝑜𝑠(𝑦𝜉)

𝜉3
𝑑𝜉 

−
2𝐴𝜈

𝜋
∫ 𝜉2 𝑐𝑜𝑠(𝜉𝑦)
∞

0

∑
(−1)𝛾

𝜆𝛾+1

∞

𝛾=0

∑
𝛾!

𝑖! 𝑗!

𝑖+𝑗=𝛾

𝑖,𝑗≥0

∑(
𝜈𝜉2

𝜆
)

𝑤∞

𝑤=0

 

Γ(−𝛾)

Γ(−(𝛾+𝑤))Γ(1+𝑤)

1

𝑞+𝜈𝜉2
(

𝑀𝑗+1

𝑞𝛼𝛾+𝛼+𝛼𝑤+𝛾+𝑤−𝑖+1
+

 
𝜆𝑀𝑗

𝑞𝛼𝛾+𝛼𝑤+𝛾+𝑤−𝑖+2
) 𝑑𝜉 .............................................. (26) 

 

Substituting Eq (25) into Eq (26),it results that 
 

𝜏(̅𝑦, 𝑞)

=
𝜇

1 + 𝜆𝑞𝛼
(−

2𝐴𝜈

𝜋
∫ (

1

(𝑞 + 𝜈𝜉2)𝑞𝜈𝜉2
)

∞

0

𝜉𝑐𝑜𝑠(𝑦𝜉)

𝜉3
𝑑𝜉

−
2𝐴𝜈

𝜋
∫ 𝜉2 𝑐𝑜𝑠(𝜉𝑦)
∞

0

∑
(−1)𝛾

𝜆𝛾+1

∞

𝛾=0

∑
𝛾!

𝑖! 𝑗!

𝑖+𝑗=𝛾

𝑖,𝑗≥0

∑ (
𝜈𝜉2

𝜆
)

𝑤∞

𝑤=0

 

Γ(−𝛾)

Γ(−(𝛾+𝑤))Γ(1+𝑤)

1

𝑞+𝜈𝜉2
(

𝑀𝑗+1

𝑞𝛼𝛾+𝛼+𝛼𝑤+𝛾+𝑤−𝑖+1
+

 
𝜆𝑀𝑗

𝑞𝛼𝛾+𝛼𝑤+𝛾+𝑤−𝑖+2
) 𝑑𝜉) ............................................ (27) 
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Inverting this result and use property 

(A3),we get theshear stress under the form  
 

𝜏(𝑦, 𝑡) = 𝜏1(𝑦, 𝑡) + 2 
𝐴 𝜇

𝜋
∬(𝐸𝑥𝑝 (−𝜈 𝜉2(𝑡 − 𝛿 ))

∞𝑡

00

 

𝑅𝛼,𝛼−1 (−
1

𝜆
, 0, 𝛿) cos(𝑦𝜉) 𝑑𝛿 𝑑𝜉

− 2
𝐴𝜈

𝜋

𝜇

𝜆
∫ 𝜉2 cos(𝜉𝑦)∑

(−1)𝛾

𝜆𝛾+1

∞

𝛾=0

∑
𝛾!

𝑖! 𝑗!

𝑖+𝑗=𝛾

𝑖,𝑗≥0

∞

0

 

∑ (
𝜈𝜉2

𝜆
)

𝑤∞

𝑤=0

Γ(−𝛾)

Γ(−(𝛾 + 𝑤)) Γ(1 + 𝑤)
 

∬𝐸𝑥𝑝(−𝜈 𝜉2(𝑡 − 𝛿))

𝑡𝜎

00

𝑅𝛼,0(−
1

𝜆
, 0, 𝑡

− 𝜎) (
𝑀𝑗+1𝛿𝛼𝛾+𝛼𝑤+𝛾+𝑤−𝑖+1

Γ(𝛼𝛾 + 𝛼𝑤 + 𝑤 − 𝑖 + 𝛾)

+ 𝜆
𝑀𝑗𝛿𝛼𝛾+𝛼𝑤+𝛾+𝑤−𝑖

Γ(𝛼𝛾 + 𝛼𝑤 + 𝑤 − 𝑖 + 𝛾 + 2)
) 

 ................................... (28) 
 

Wherever the generalized function  

Rc, d (a,b,t) [18],is defined by, 
 

𝑅𝑐,𝑑(𝑎, 𝑏, 𝑡)  = ∑
(𝑎)𝑤(𝑡 − 𝑏)𝑐(𝑤+1)−𝑑−1

Γ(𝐿 + 1)Γ((𝑤 + 1)𝑐 − 𝑑)

∞

𝑤=0

 

 

And [19] 

𝜏1(𝑦, 𝑡) = −2
𝜌𝐴

𝜋
∫ (1 − 𝐸𝑥𝑝(−𝜈𝑡𝜉2)

cos(𝑦𝜉)

𝜉2

∞

0
𝑑𝜉 =

−2𝜌𝐴√𝜈𝑡𝑖𝐸𝑟𝑓𝑐 (
𝑦

2√𝜈𝑡
),  ...................................... (29) 

 

Is the shear stress equivalent to a 

Newtonian fluid performing a same motion. 

 

5- Special case 
Applyingthe limit (α→1) into Eq.(23) and 

Eq.(28), we tend to acquire the similar 

solutions 
 

𝑈(𝑦, 𝑡) = 𝑈1(𝑦, 𝑡)

−
2𝐴

𝜋𝜈
∫(1

∞

0

− 𝐸𝑥𝑝(−𝜈𝜉2𝑡))
𝑠𝑖𝑛(𝑦𝜉)

𝜉3
𝑑𝜉

−
2𝐴𝜈

𝜋
∫ 𝜉 𝑠𝑖𝑛(𝑦𝜉) ∫ 𝐸𝑥𝑝(−𝜈(𝑡

𝑡

0

∞

0

− 𝛿)𝜉2)

×∑
(−1)𝛾

𝜆𝛾+1

∞

𝛾=0

∑
𝛾!

𝑖! 𝑗!

𝑖+𝑗=𝛾

𝑖+𝑗≥0

∑ (
𝜈𝜉2

𝜆
)

𝑤∞

𝑤=0

 

Γ(1 − (𝛾 + 1))

Γ(𝑤 + 1)Γ(1 − 𝑤 − (𝛾 + 1))
 

(
𝛿2𝛾+2𝑤+1−𝑖

Γ(2𝛾 + 2𝑤 + 2 − 𝑖)
𝑀𝑗+1

+
𝛿2𝛾+2𝑤−𝑖+1

Γ(2𝛾 + 2𝑤 − 𝑖 + 2)
𝜆𝑀𝑗) 𝑑𝛿𝑑𝜉  

 ................................... (30) 
 

And by using property (A6),we get  

τ(y, t) = τ1(y, t) − 2
Aμλ

π
∫

1

(νξ2λ − 1)

∞

0

× (Exp(−νξ2t)

− Exp (−
t

λ
)) cos(yξ) dδ dξ

− 2
Aνμ

πλ
Exp (

−t

λ
)∫ ξ2 cos(yξ)

∞

0

 

∬𝐸𝑥𝑝 (−𝜈𝜉2(𝜎 − 𝛿) +
𝜎

𝜆
)

𝑡𝜎

00

∑
(−1)𝛾

𝜆𝛾+1

∞

𝛾=0

 

∑
𝛾!

𝑖! 𝑗!

𝑖+𝑗=𝛾

𝑖,𝑗≥0

∑ (
𝜈𝜉2

𝜆
)

𝑤∞

𝑤=0

Γ(−γ)

Γ(−(γ + w))Γ(1 + w)
 

(
Mj+1δ2γ+2w−i+1

Γ(2γ+2w−i)
+ λ

Mjδ2γ+2w−i+1

Γ(2γ+2w−i+2)
) ....................... (31) 

 

6- Results and Discussion 
In this paper, we presented an analysis for 

the unsteady MHD flow an incompressible 

generalized Maxwall fluid due to an infinite 

constantly accelerating plate.  

The solutions for the velocity field and 

shear stress in terms of generalized G and R 

functions are obtained by using the Fourier 

sine and Laplace transforms .The characteristic 

of velocity field were analyzed in terms of the 
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analytical solutions get in Eq(22)We take 

ν=0.001, A=1,in all Figures. 

The influences of relaxation time on the 

velocity field is show in Fig.(1), effectof 

increasingλ is an decreasesofthe velocity field 

U(y,t) whenM=2,t=2, α=0.9 

In Fig.(2) show the velocity change with 

the fractional parameter α when M= 2, t=2, 

λ=3,the velocity field decrease when α is 

increasing. 

In Fig.(3) demonstrates the influence of the 

magnetic field M on the velocity when λ =3, α 

=0.9, t =2, you can see that the velocity field is 

decreasing with increase of the magnetic 

parameter. 

Fig.(4) demonstrates the influence of flow 

of velocity field for various values of time. It 

is seen that the greater the time the more 

slowly the velocity field decays, when λ= 3, M 

= 2, α =0.9. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(1): Velocity Field U(y,t) for 

λ =4, 3, 2, when M=2, t=2, α=0.9. 

 

 
 

Fig.(2): Velocity Field U(y,t) forα = 0.5, 

0.6,0.8 when M=2, t=2, λ =3. 

 

 
 

Fig.(3): Velocity Field U(y,t) for M= 2, 1, 0.5, 

when α= 0.9, t = 2, λ =3. 
 

 
Fig.(4): Velocity Field U(y,t)for 

t=1.5, 1, 0.7when α=0.9, M=2, λ =3. 
 

Appendix:- 

(𝐴1) 𝐷𝑡
𝑝(𝑡𝑎) =

Γ(𝑎 + 1)

Γ(𝑎 + 1 − 𝑝)
𝑡−𝑝 

(A2)
1

z + a
= ∑ (−1)r

zr

ak+1

∞

r=0
∑ Cr

mbm
r

m=0

= ∑
r! bm

m! l!

m+l=r

m,l≥0
 

(𝐴3) (
𝑡𝑞

Γ(𝑞 + 1)
) =

1

pq+1
 ;  𝑅𝑒(𝑞) > −1, 𝑅𝑒(𝑝)

> 0 

(A4) L−1 (
qf

(qd − d)e
) = Gd,f,e(p, t), 

𝑅𝑒(𝑑𝑒 − 𝑓) > 0, 𝑅𝑒(𝑞) > 0 
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(𝐴5) 𝐿−1 (
𝑝𝐵

(𝑝𝑎 − 𝑞)
)  =  𝑅𝑎,𝐵(𝑐, 0, 𝑡), 𝑅𝑒(𝑎 − 𝐵)

> 0, 𝑅𝑒(𝑝) > 0  

(𝐴6) 𝑅1,0 (
1

𝜆
, 0, 𝑡) = ∑ (

1

𝜆
)
𝑛∞

𝑛=0

𝑡𝑛

Γ(𝑛 + 1)

= 𝐸𝑥𝑝 (−
𝑡

𝜆
) 
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 الخلاصة
الهدف من هذا البحث هو دراسة تأثير المجال 
المغناطيسي على التدفق اللامستقر لمائع ماكسويل ذو 
المشتقات الكسرية نتيجة لوحة متسارعة ثابتة، حساب 

الكسري قد استخدم لكتابة معادلات التفاضل والتكامل 
الحركة,باستخدام تحويلات فورييه و لإبلاس يتم عرض 
الحلول الدقيقة بصيغة التكامل ومتسلسلات بدلالة 

المعلمات على حقل السرعة قد  تأثير ،أخيراRوGالدوال
 درست من خلال الإيضاحات التخطيطية.
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