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Abstract

The aim of this paper is to study the effect of magnetic hydrodynamic (MHD) on unsteady flow
of Maxwell fluid with fractional derivative due to a constant acceleration plate. The fractional
calculus process is introduced to establish the constitutive relationship of fluid model, by using
Laplace transform and Fourier sine transform, we obtained closed solutions for velocity field and
shear stress. Lastly, the solutions are present by integral and series form in terms of the generalized
G and R functions. The influence of the parameters on the velocity field spotlighted by means of the

several graphs.
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Introduction

Now the most ofscientists and engineers
have a great interest to real fluids that does not
exhibit a linear relationship between stress and
rate of strain, this attraction has mature
considerably throughout the past few decades
because of their varied applications in industry
and engineering,these applications ranges from
oil and well drilling to well completion
operation,from technique involving waste
fluids, synthetics fibers, extrusion of liquid
plastic, artificial, exotic lubricants and natural
gels and additionally as some flows of
compound solutions,several fluids including
with butter, cosmetics and toiletries, paints,
soaps, oils, blood, shampoo fluids including
withcosmetics and toiletries, butter, paints,
soaps, oils, blood, shampoo and marmalades
have rheological characteristics and are stated
as the non-Newtonian fluids and marmalades
have rheological characteristics and are stated
as the non-Newtonian fluids, the rheological
properties of those fluids cannot be explained
by using a single constitutive relationship
between stress and shear rate that is kind of
different than the viscous fluids, the modeling
of equations governing the non-Newtonian
fluids provides rise to actuallynonlinear
differential equations, generally physics
properties of materials are such by their so
known as constitutive equations, the only
constitutive equation for a fluid isa Newtonian
one, and the classical Navier - Stokes theory is
based, the mechanical behavior of the many
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fluids is drawn by this theory [1-4], in general,
the classification of the non-Newtonian fluid
models is given below by three classes that are
known as differential, integral and rate in
general, the classification of the non-
Newtonian fluid models is given below by
three classes that are known as differential,
integral and rate varieties, among them, the
viscoelastic rate type model, that is used wide,
is the Maxwell model, among them, the
viscoelastic rate type model, that is used wide,
is the Maxwell model.[5]

Fractional calculus has encountered much
success within the description of the
complicated dynamical systems [6]. The
begining point of the fractional derivative
model of viscoelastic fluid is often a classical
differential equation a classical equation that is
modified by substitution the time derivative of
an integer order by the Riemanm - Liouville
fractional calculus operator.

This generalization permits one to outline
precisely non-integer order integrals or
derivatives a very sensible agreement is
achieved with experimental knowledge once
the fractional Maxwell model is utilized with
its initial order derivatives replaced by the
fractional— order derivatives [7].

In recent years, the interest in unsteady flow
of such a viscoelastic fluid with fractional
derivative Maxwell model has magnified
considerably and plenty of exact solutions are
determined [8-12]. Khan[13],discussed some
exact solutions for fractional generalized



Burgers’ fluid in porous space. Xue and Nie
[14] studied the exact solutions of Rayleigh —
stokes problem for heated generalized
Maxwell fluid in a porous half —space. Zheng
et al [15] discussed the exact solution for
MHD flow of generalized Oldroyd-B fluid.
C.Fetecau [16] discussed the exact solutions
for the unsteady flow of a viscoelastic fluid
with fractional derivative Maxwell model
produced by an infinite constantly accelerating
plate. In the present work, we have to study
the effect MHD of unsteady flow of a
generalized Maxwell fluid with fractional
derivative because of a constantly accelerating
plate. The precise solutions for the velocity
field and shear stress are obtain by using the
Fourier sine transform and discrete Laplace
transform.

1-Description of the problem:-

Consider an incompressible Maxwell fluid
with fractional derivative which is, also known
as generalized Maxwell fluid (GMF) lying
over associate degree of infinite flat plate. At
first ,the fluid is at rest and at time t=0" the
infinite plate begins to slide in its plane with
the velocity (At),where A is a constant due to
the shear, and the fluid higher than the plate is
step by step moved. The associated boundary
and initial conditionare

U(y,t),a%;’t)ﬁOasyﬁoo,t>O ................. (1)
au(y,0)

U(y,0) ===== 0,7 > 0 s )

U0,8) = At £ =0 eoooeoeeeeeeeeeeeeeeeeeeeeeee s 3)

In order to solve the problem under
consideration, we shall use the Fourier sine
and Laplace transformation.

2- Governing equations:-

The constitutive equations for associate
incompressible Maxwell fluid with fractional
derivative is given by

Where T is Cauchy stress tensor, p is a
pressure and I is an identity tensor, and

S+ ADES +V.VS = LS = SLT) = u A

Where S is that the additional — stress
tensor, V is that the velocity vector, L is that
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the velocity gradient, A = L+LT is that the first
Rivlin—Ericksen tensor,Vis that the gradient
operator,A is that the relaxation time, p is that
the dynamic viscosity and Di* is that the
Riemann-Liouville  fractional  differential
operator oforder a with respect to twhich in
defined as

1 d et f(»)
F(l—a)Efo (t-1)% dT,O <a<l1

DEf(t) =

Where I'(.) is the Gamma function.This
model reduces to the standard Maxwell model
when o=1 and therefore the Newtonian model
once o=1 and A=0.

For the problem under consideration, we
have a tendency to get a velocity field of the
form

V=Vt =U®,ti

Where U(y,t) is that the velocity at intervals
the x-coordinate direction which i is that the
unit vector within the same direction. For this
velocity field.Consider that the conducting
fluid is permeated by an imposedmagnetic
field B zero that acts in the positive
y- coordinate .in the low-magnetic Reynolds
number approximation, the magnetic body
force is represented by oBZ,where ¢ is that the
electrical ~ conductivity of the fluid.
Substituting Eq(7) into the Eq(4),Eq(5) and
taking in to account the initial condition:

S(y,00=0,y>0
Such thatthe fluid being at rest up to the

time t=0, we haveS,, =S,, =S, =S,, =
0and S,, = S,,we get

a
(1+AD{)t(y, t) = 3 Uy, t),

Where 7 (y,t) =Sy(y,t) is that the shear
stress that is all totally different of zero,in the
absence of body forces and a pressure gradient
at intervals the flow direction,the balance of
momentum finishes up within the relevant
equation

UGy _ 0
at  dy

Wherever p is that the constant density of
the fluid.

Eliminating T(y,t) betweenEq(9)and
Eq(10),we findthe governing equation
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(1+2Df)F20 =2 ;’y(ﬁ'” — MU, ) o (1)
Wherever v = w/p is the kinematic viscosity
2
of the fluid and M = By
Yo,

3-Calculation of the velocity field:-

The velocity field can be obtained
bymultiplying both sides of Eq(11) by
N2/ 7z sin(y&)integrating then with respect to

y from 0 to o and having in mind the initial
and boundary conditions (1),(2)and (3), we
find that

1+ AD;")aUsa—f't) +vE2UL(¢t) = vAEt\/% -

Where the Fourier sine transform of U(y,t)
has to satisfy the conditions

Us(£,0),

3U(f 0)

=0for,§ >0 i,

Applying the Laplace transform to Eq(12)
and using the Laplace transform formula for
serial fractional derivatives [6], we acquire the
image function U_(&,q) of U (&,t) below the

shape

vAE

Us(¢,q) = J; PPy L.

In order to get U_(&,t) = LU (£,q) and to

avoid the long calculations of residues and
contour integrals, we tend to apply the distinct
inverse  Laplace  transform  technique
.However, for a additional appropriate
presentation of the ultimate results, we first
rewrite Eq(14) within the equivalent forms

Us(¢,q) =

fq
4 S( 1+1q%+Mq~? 2 1
n qu‘z(/lq“+1+VE2+q+M) m §q?

Vf\/: (q+Vf2)qu‘2 B

a-lyiy

SZ\/7(q+v$2)(q+lq°‘+1+v52+M)

The second factor of the last term of
Eq.(15)can be written within the sort of a
double series,(see Appendix (Al)).
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%1+ M
q+Aq*tt +vEE+ M
y!q'M/ (Ag®t + M)

o0 ltj=y
-0y

y+1 ﬁ y+1
y=0 A {720 b (q“"’1 + %)
We obtain,
€9

a2, E(;)
=i ™ f\Greee
ey |21 > &

- Ay Eq+vfz .

-0y y!
Ar+ it
y=0 i,j20

qiMi(1q=L4M)

(qa+1+v52>y+1

Inverting the result by means that of the
Fourier sine formula [17],we get that

L_](};l' ? 24v [ 1
v
" f ((q+v52)q 62)5‘“”5”5
2 (“Esin(E) (<Y oyt
q+v§2 AV“ & i!j!
(G (q)(AMf) + G, (q)MJ“)df ......................... (17)
Where [18],
6(q) _a—bd)c b-ac(1 — Ly=¢ Re(ac - b) >
R (18)
With ai=o+1,b1=0-i+1,a2==0+1,b2=i, and

ci1=C>=k+1 are not constrained to be integers
and di= do= - v &% A, using the binomial
theorem, we can also write

_ o F(l—c)qb ac—as S
6@ = L iGrora—s—g W
> [q° )

This last expression may be term by term
inverse transformed, yielding [18]

Gab,c (%{2: t) = L_I{G(q)} =

o F(l_c)q(c+s)a—b—1 E N
25=0 [(s+1)I((c+s)a-b) ( A )



If Re ((-b)+ac)) > 0, Re(q) > 0 and|qa| >
2
% the form of EQ(20) presents analysis

difficulties,since once c is associate integer,
I'(I-c) and TI'(1-s-c) will become infinite.
However, it may be rewritten within the
following calculable from [18],

_VszZ
Ga,b,c (T ’ t)

i (C)Sq(c+s)a—b—1
_S=0F(s+1)l"((c+s)a—b)

Where (c )s is the Pochhammer Polynomial.
Finally, applying the inverse Laplace
transform to Eq(17) and taking under
consideration all the previous results and

useproperty (A3),it is not difficult to point out
that

=)

U(y,t) = At ZAfw(l
Y= v

— Exp(—ve?t))- gf) dé
2A
- f £sin(y) j Exp(-v(t
- 5)5 )
S e (v
Ar+l Z ilj! Z (T)
y=0 i+j20 w=0
r(1-@+1)
Tw+DM(1-w-(y+1))
6ay+aw+a+y+w—i it
(F(ay+aw+a+y_+w—i+1) M t
Savtaw+ytw-i+1 ,
T(ay+wa+y+w—i+2) AM]) L (22)

Or equivalently

24v [
U0 = 00,0 - = [ £sinG)

0
¢ © i+j=y
—1)Y !
fExp(—V(t - 8)22) ()\y+)1 Z IIY_I
] Y=0 i4j20 I
Vel r(1-@+1)
2.5

r(w+Dr(1-w-(y+1)

w=0
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AMI /

5ay+a+wa+y+w—i

lay+wa+a+y+1+w-
5ay+wa+y+1+w—i

+
Flay +wa+y+w—-i+2)

AOAE oo (23)
Where [19],

o (1-Exp(-vE&?%t) )sin(yé)
Ul(%t) :At_% 0 ( 53 ) df:
4AtI%Erfc (%) ............................................... (24)

Appear the velocity field comparable to a
Newtonian fluid and Erfc(.) isthe integrals of
the complementary Error function of
Gauss[19].

4-Calculation of the shear stress:-

Applying the Laplace transform to Eq(9)
and using the initial condition Eq (8),we get

(y,q) = 1 (;M) ................................ (25)

1+Aq%* 0y
Where, the differentiation of Eq.(17) with
respect to y,we get

aU(y, q)
dy
_ ZAVJ“’( 1 )Ecos(yé’)df
oo (q+Vs‘2)qVE2 £
> (DY - (ve%)"
2 -
f £ cos(§) ) Z l,},z< A)
y=0 i,j20 w=0
r'(-y) 1 ( mitt n
F(—(y+w))F(1+w) q+véz \qartatawty+w-i+1

Ml
qevtaw+y+w- L+2) df

Substituting Eq (25) into Eq (26),it results that

| e

o i+j=y
24v [ (=1)"
= Ezcos(fy);)

ISy
r'(-y) 1 (

{720
Mj+1
T(-(7+w))I(1+w) q+vE2
M

qay+a+aw+y+w—i+1
qar+aw+y+w= L+2) df)

iy, q)
o 24v
1+ g@

§cos(y$)
&3

d$

4

_|_
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Inverting this result and use property
(A3),we get theshear stress under the form

A oot
0.0 =000 +2 L || E (v 26 - )
00

1
Ruacs (—3,0,6) cos(v) do dg
A . o0 ( 1)}/ i+j=y |
vu - y!
-] ew o Y T )
0 y=0 G0 v

i (ﬁ)w r(-y)
A) T(=(y+w))T(A+w)

w=0

ﬂ Exp(-v &t -9)) Ra‘O(_Z' 0,t
0

( Mj+16ay+aw+y+w—i+1

I(ay +aw+w —i+y)
Mj6ay+aw+y+w—i
A
F(ay+aw+w—i+y+2))

Wherever the generalized function
R d (a,b,t) [18],is defined by,

N\ @Y(-
Reala,b,t) = \Zo I(L+Dr((w+ e -d)

b)c(w+1)—d—1

And [19]
7:(y,t) = —Z%fooo(l — Exp(—vté )Cos(yf) d¢ =
—2pAVtiErfc (#ﬁ), ...................................... (29)

Is the shear stress equivalent to a
Newtonian fluid performing a same motion.

5- Special case

Applyingthe limit (0—1) into Eq.(23) and
Eq.(28), we tend to acquire the similar
solutions
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U()’; t) = Ul(y’ t) o
24 1
_E (
° (s)
— Exp(-v§?) = y d¢

A f £ sin(y¢) f Exp(—v(t
-0y )

(- l)V v
z z Ly(s)
r(1 -+ 1))
rw+Dr(1-w-(y+1)
62y+2w+1—i
(F(2y+2w+2—i)M

62y+2w—i+1

_|_
TQy +2w—i+2)

Jjt+1

/1Mf> d6dé

And by using property (A6),we get
GO=nmy -2 [
T =0 T J, (vVEA-1)

X (Exp(—vﬁzt)

— Exp (— %)) cos(yE) db d
Ao f £ cos(yD)

—Z—Exp
UExp v52(0—6)+) (A_y_?ll’

y=0
L+] ‘y
Z Z (Vf ) '(=y)
G U (- + W)@ +w)
mit1g2y+aw- 1+1 Mi§2y+ew—i+1
( F(2y+2w-i) F(2y+2w—i+2)> """"""""""""" (31)

6- Results and Discussion

In this paper, we presented an analysis for
the unsteady MHD flow an incompressible
generalized Maxwall fluid due to an infinite
constantly accelerating plate.

The solutions for the velocity field and
shear stress in terms of generalized G and R
functions are obtained by using the Fourier
sine and Laplace transforms .The characteristic
of velocity field were analyzed in terms of the



analytical solutions get in EQq(22)We take
v=0.001, A=1,in all Figures.

The influences of relaxation time on the
velocity field is show in Fig.(1), effectof
increasing) is an decreasesofthe velocity field
U(y,t) whenM=2,t=2, 0=0.9

In Fig.(2) show the velocity change with
the fractional parameter o when M= 2, t=2,
A=3,the velocity field decrease when o is
increasing.

In Fig.(3) demonstrates the influence of the
magnetic field M on the velocity when A =3, a
=0.9, t =2, you can see that the velocity field is
decreasing with increase of the magnetic
parameter.

Fig.(4) demonstrates the influence of flow
of velocity field for various values of time. It
is seen that the greater the time the more
slowly the velocity field decays, when A= 3, M
=2,0=0.09.

015 | =4

010 f — =3

005 [

015 1010 1006

1ok

T b

T b

Fig.(1): Velocity Field U(y,t) for
4 =4, 3, 2, when M=2, =2, a=0.9.

015 |-
oo

0%

015 1010 10

0%

1010

05k

Fig.(2): Velocity Field U(y,t) fora = 0.5,
0.6,0.8 when M=2, =2, /. =3.
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105 1010 100 015
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Fig.(3): Velocity Field U(y,t) for M= 2, 1, 0.5,
when a= 0.9, t =2, A =3.

0%
010

006 H

1055 1010 006
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1010+
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Fig.(4): Velocity Field U(y,t)for
=15, 1, 0.7when 0=0.9, M=2, A =3.

Appendix:-
[(a+1)
Prray — -p
(41) e (%) T(a+1-p)
(A2) — —zm 2 z Cmpm
z+a_ r=0( ) ak+1 m=0 '
m+l=r ] pm
:Zm,lzo m! 1!
A3 ( A P . R LR
43) (f ) = e Rel@) > 1, Re()
>0
qf
(A4) L™ (W) = Ggte(p, 1),

Re(de — f) > 0,Re(q) >0
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pB

) = R,5(c,0,t),Re(a — B)
') '
> 0,Re(p) >0

45) Lt (

w0 h00)= 3 (3 5
W) T L\ T+ 1)
n=0
-5w(-3)
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