On Commutativity of Rings with ($\sigma, \tau)$-Biderivations

Auday Hekmat Mahmood
Department of Mathematic, College of Education, Al-Mustansiriyah University, Baghdad-Iraq.

Abstract

Let R be a prime ring with characteristic different from $2, \mathcal{J}$ be a nonzero ideal of R . in this paper, for $\alpha, \beta, \sigma, \tau$ as automorphisms of R , we present some results concerning the relationship between the commutativity of a ring and the existence of specific types of a (σ, τ)-Biderivation, we prove: (1) Suppose $F: R \times R \rightarrow R$ is a nonzero (σ, τ)-Biderivation then R is a commutative ring if F satisfies one of the following conditions: (i) $\mathrm{F}(\mathcal{J}, \mathcal{J}) \subset \mathrm{C}_{\alpha, \beta}$ (ii) $[\operatorname{ImF}, \mathcal{J}]_{\alpha, \beta}=0$ (iii) $\mathrm{F}(\mathrm{x} \omega, \mathrm{y})=\mathrm{F}(\omega \mathrm{x}, \mathrm{y})$ for all $\mathrm{x}, \mathrm{y}, \omega \in \mathcal{J}$. (2) Suppose $F_{1}: R \rightarrow R$ is a nonzero (σ, τ)-derivation and $F_{2}: R \times R \rightarrow R$ is a (α, β)-Biderivation with $\operatorname{ImF}_{2}=R$, If $\mathrm{F}_{1} \mathrm{~F}_{2}(\mathcal{J}, \mathcal{J})=0$ then $\mathrm{F}_{2}=0$.

Keywords :Prime rings, Automorphisms, (σ, τ)-Biderivation.

1. Introduction

Throughout this paper R will be represent an associative ring with center $Z(R)$, and $\alpha, \beta, \sigma, \tau$ are automorphisms of R. Recall that a ring is called prime if for any $\mathrm{a}, \mathrm{b} \in R, a R b=\{0\}$ implies that either $a=0$ or $b=0$. The (σ, τ)center of R denoted by $C_{\sigma, \tau}$ and defined by $C_{\sigma, \tau}=\{c \in R: \quad c \sigma(r)=\tau(r) c$, for all $r \in R \quad\}$. As usual $[x, y]$ is denoted the commutator $x y-y x$, and we make use of the commutator identities $[x y, z]=[x, z] y+x[y, z],[x, y z]=$ $[x, y] z+y[x, z], x, y, z \in R$. The symbol $[x, y]_{\alpha, \beta}$ stands for $x \alpha(y)-\beta(y) x$, also we will make extensive use of the following identities:

- $[x y, z]_{\alpha, \beta}=x[y, z]_{\alpha, \beta}+[x, \beta(z)] y$
$=x[y, \alpha(z)]+[x, z]_{\alpha, \beta} y$
- $[x, y z]_{\alpha, \beta}=\beta(y)[x, z]_{\alpha, \beta}+[x, y]_{\alpha, \beta} \alpha(z)$

A biadditive mapping $F: R \times R \rightarrow R$ called a (σ, τ)-Biderivation if it satisfies the following:
i. $F(x y, z)=F(x, z) \sigma(y)+\tau(x) F(y, z)$
ii. $F(x, y z)=F(x, y) \sigma(z)+\tau(y) F(x, z)$

It is clear that the concept of a (σ, τ) Biderivation includes the concept of Biderivation [9]. By \mathbb{Q}_{r} we will denote the Martindale ring of quotient of R. It is known that this ring introduced by Martindale in [10], can be characterized by the following four properties.
(i) $R \subseteq \mathbb{Q}_{r}$.
(ii) for every $q \in \mathbb{Q}_{\mathrm{r}}$ there exist a nonzero ideal \mathcal{J} of R such that such that $q \mathcal{J} \subseteq R$.
(iii) $\operatorname{if} q \in \mathbb{Q}_{r}$ and \mathcal{J} is a nonzero ideal \mathcal{J} of R such that $q \mathcal{J}=0$, then $q=0$.
(iv) ifJ is an ideal of R and $h: \mathcal{J} \rightarrow R$ is a right R-module map, then there exist $q \in$ \mathbb{Q}_{r} such that $h(u)=q u$ for all $u \in \mathcal{J}$.

Remarks:

1 - The center of \mathbb{Q}_{r}, which denote by C, is called the extended centroid of R.
2- C is a field and $Z \subseteq C$.
3- The sub ring of \mathbb{Q}_{r} generated by R and C called the central closure of R and denoted by R_{c}.
4- The sub ring \mathbb{Q}_{s} of \mathbb{Q}_{r} where:
$\mathbb{Q}_{s}=\left\{q \in \mathbb{Q}_{r}: \mathcal{J} q \subseteq R\right.$ for some nonzero ideal \mathcal{J} of $R\}$ is called the symmetric Martindale ring of quotient.
5- If $q_{1} R q_{2}=0$ with $q_{1}, q_{2} \in \mathbb{Q}_{r}$ implies that $q_{1}=0$ or $q_{2}=0$.

The study of the commutativity of prime rings with derivation initiated by E. C. Posner [3]. Over the last three decades, a lot of work has been done on this subject. Many authors have investigated the properties of prime or semiprime rings with a (σ, τ)-derivation.

Our objective in the present paper is to generalize some results in [2], [7] and [8], further we introduce other results, for instance: Ashraf and Rehman proved in [5] that, if d_{l} and d_{2} are two (σ, τ)-derivations of R such that $d_{1} \sigma=\sigma d_{1}, d_{2} \sigma=\sigma d_{2}, d_{1} \tau=\tau d_{1}, d_{2} \tau=\tau d_{2}$ and $d_{1} d_{2}(R)=0$, then $d_{l}=0$ or $d_{2}=0$. Here we prove, if U is a nonzero ideal of R, F_{1} is a (σ, τ) derivation and F_{2} is a (σ, τ)-Biderivation with
$\operatorname{Im} F_{2}=R$. If $F_{1} F_{2}(U, U)=0$ then either $F_{1}=0$ or $F_{2}=0$.

2. Preliminaries

In this section we recall some basic definition gather together a few results of general interest that will be needed.

Definition: [6]

Let R be ring. An automorphism σ of R is said to be X-inner if, there exists an invertible element $a \in \mathbb{Q}_{s}$ such that $\sigma(r)=$ ara $^{-1}$ for all $r \in R$.

Lemma 2.1: [6]

Let M be any set. Suppose that $H, G: M \rightarrow$ \mathbb{Q}_{r} satisfy $H(s) \times G(t)=G(s) \times H(t)$, for all $s, t \in M$ and all x in some nonzero \mathcal{J} ideal of R. if $H \neq\{0\}$, then there exists $\lambda \in \mathrm{C}$ such that $G(s)=\lambda H(t)$.

Lemma 2.2: [1]

Let R be ring. Suppose σ is an automorphism of R. if there exist nonzero elements $a_{1}, a_{2}, a_{3}, a_{4} \in \mathbb{Q}_{r}$ such that $a_{1} r$ $a_{2}=a_{3} \sigma(r) a_{4}$ for all $r \in R$, then σ is X-inner.

Lemma 2.3: [4]

Let R be a semiprime ring, and let \mathcal{J} be a right ideal of R, then $Z(\mathcal{J}) \subset Z(R)$.

Lemma 2.4: [4]

Let R be semiprime ring, \mathcal{J} a right ideal of R. If the ideal \mathcal{J} is a commutative, then $\mathcal{J} \subset Z(R)$.In addition if R is a prime ring then R must be commutative.

For prove of our results in this study, we need to introduce some preliminary lemmas.

Lemma 2.5 :

Let R be ring and S be a subring of R. if F : $S \times S \rightarrow R$ is a (σ, τ)-Biderivation, then for any $x, y, z, u, v \in S$ we have:
$F(x, y) \sigma(z)[\sigma(u), \sigma(v)]=[\tau(x), \tau(y)] \tau(z)$ $F(u, v)$

Proof:

We compute $F(x u, y v)$ in two different ways. Since F is a (σ, τ)-Biderivation in the first argument, then we have:
$F(x u, y v)=F(x, y v) \sigma(u)+\tau(x) F(u, y v)$
Using the fact that F is a (σ, τ)-Biderivation in the second argument, it follows:

```
\(F(x u, y v)=F(x, y) \sigma(v) \sigma(u)+\tau(y) F(x, v) \sigma(u)\)
    \(+\tau(x) F(u, y) \sigma(v)+\tau(x) \tau(y) F(u, y)\)
```

On the other hand, we have:

$$
\begin{aligned}
& F(x u, y v)=F(x u, y) \sigma(v)+\tau(y) F(x u, v) \\
&=F(x, y) \sigma(u) \sigma(v)+\tau(x) F(u, y) \sigma(v) \\
&+\tau(y) D(x, v) \sigma(u)+\tau(y) \tau(x) F(u, y)
\end{aligned}
$$

Comparing the relations so obtained for $F(x u, y v)$, we get:
$F(x, y)[\sigma(u), \sigma(v)]=[\tau(x), \tau(y)] F(u, v)$, for all $x, y, u, v \in S$.

Putting $z u$ for u, and using the identity $[s \omega, t]=[s, t] \omega+s[\omega, t]$, we obtain the assertion of the lemma.
O. Glbasi and N. Aydin Showed in [8 lemma 2] that: Let R be prime ring, \mathcal{J} be a nonzero ideal of R and D is a (σ, τ)-derivation of R. $\mathrm{f} D$ is trivial on \mathcal{J} then D itself is trivial. n the next lemma we extend this result to (σ, τ) Biderivation.

Lemma 2.6:

Let R be prime ring, \mathcal{J} be a nonzero right ideal of R. Suppose that $F: R \times R \rightarrow R$ is a (σ, τ)-Biderivation. If $F(\mathcal{J}, \mathcal{J})=0$ then $F=0$.

Proof:

For any $u, v \in \mathcal{J}, r \in R$, we have:
$0=F(u r, v)=F(u, v) \sigma(r)+\tau(u) F(r, v)$
That is
$\tau(u) F(r, v)=0$, for all $u, v \in \mathcal{J}, r \in R$.
Putting $u s, s \in R$ instead of u in above relation gives:
$\tau(u) \tau(s) F(r, v)=0$, for all $u, v \in \mathcal{J}, r, s \in R$.
Hence
$u R \tau^{-1}(F(r, v)=0$, for all $u, v \in \mathcal{J}, r \in R$.
Using the primeness of R, since \mathcal{J} is a nonzero left ideal of R, we conclude that:
$F(r, v)=0$, for all $v \in \mathcal{J}, r \in R$.
Replacing v by $v t, t \in R$, we get:
$\tau(v) F(r, t)=0$, for all $v \in \mathcal{J}, r, t \in R$.
This means that:
$\mathcal{J}^{-1}(F(r, t))=0$, for all $r, t \in R$.
Since R is a prime ring and \mathcal{J} is a nonzero right ideal of R, it follows that $F=0$.

3. (σ, τ)-Biderivation and commutativity of prime rings

Theorem3.1:
Let R be a non-commutative prime ring and $F: R \times R \rightarrow R$ be a nonzero (σ, τ)-Biderivation, then there exists an invertible element $b \in \mathbb{Q}_{s}$ such that $\sigma^{-1}(F(x, y))=b[x, y]$.

Proof:

According to lemma (2.6), the mapping F satisfies that:
$F(x, y) \sigma(z)[\sigma(u), \sigma(v)]=[\tau(x), \tau(y)] \tau(z)$ $F(u, v)$, for all $x, y, z, u, v \in R$.

That is
$\sigma^{-1}(F(x, y)) z[u, v]=\theta([x, y]) \theta(z) \sigma^{-1}(F(u, v))$ for all $x, y, z, u, v \in R$, where $\theta=\sigma^{-1} \circ \tau$ is an automorphism of R.

Since R is a non-commutative ring and $F \neq 0$, we can find $a_{l}=\sigma^{-1}(F(x, y)) \neq 0, a_{2}=[u$, $v] \neq 0, a_{3}=[\theta(x), \theta(y)] \neq 0$ and $a_{4}=\sigma^{-1}(F(u, v)) \neq 0$, then we have:
$a_{1} z a_{2}=a_{3} \theta(z) a_{4}$, for all $z \in R$.
Hence by lemma (2.2) we conclude that θ is X-inner, that is $\theta(s)=a s a^{-1}$ for some $a \in \mathbb{Q}_{s}$. Therefore:
$\sigma^{-1}(F(x, y)) z[u, v]=a \quad[x, y] z a^{-1} \sigma^{-1}(F(u, v))$, for all $x, y, z, u, v \in R$.

Left multiplication by a^{-1} leads to:
$a^{-1} \sigma^{-1}(F(x, y)) z[u, v]=[x, y] z a^{-1} \sigma^{-1}(F(u, v))$, for all $x, y, z, u, v \in R$.

Let $M=R \times R$, note that maps $H, G: M \longrightarrow$ \mathbb{Q}_{r} defined by $H(x, y)=[x, y]$,
$G(x, y)=a^{-1} \sigma^{-1}(F(x, y))$ satisfy all the requirements of lemma(2.1). So there exist $\lambda \in$ C such that:

$$
G(x, y)=\lambda H(x, y) .
$$

That is:
$a^{-1} \sigma^{-1}(F(x, y))=\lambda[x, y]$, for all $x, y \in R$.
Equivalently
$\sigma^{-1}(F(x, y))=b[x, y]$, for all $x, y \in R$, and $b=\lambda a$.
Note that $b \neq 0$ for $F \neq 0$, whence b is invertible.

Theorem 3.2:

Let R be a prime ring, \mathcal{J} be a nonzero ideal of R. suppose that $F: \quad R \times R \rightarrow R \quad$ is
anonzero (σ, τ)-Biderivation such that $F(\mathcal{J}, \mathcal{J}) \subset$ $C_{\alpha, \beta}$. Then R is a commutative ring.

Proof:

According to hypothesis, for any $u, v, \omega \in \mathcal{J}$ we have:
$[F(u \omega, v), r]_{\alpha, \beta}=0$, for all $r \in R$.
Equivalently
$F(u, \quad v)[\sigma(\omega), \quad \alpha(r)] \quad+[F(u, \quad v), \quad r$ $]_{\alpha, \beta} \sigma(\omega)+\tau(u)[F(\omega, v), r]_{\alpha, \beta}+[\tau(u), \beta(r)]$ $F(\omega, v)=0$

According to (1) the above relation reduces to: $F(u, v)[\sigma(\omega), \alpha(r)]+[\tau(u), \beta(r)] F(\omega, v)=0$, for all $u, v, \omega \in \mathcal{J}, r \in R$.

Taking $\theta(\omega)$ instead of r in the above relation where $\theta=\alpha^{-1} \sigma$, we get:
$[\tau(u), \beta \theta(\omega)] F(\omega, v)=0$, for all $u, v, \omega \in \mathcal{J}$.

Putting u zinstead of u in (2) and using (2), we arrive at:
$[\tau(u), \beta \theta(\omega)] \tau(z) F(\omega, v)=0$, for $u, v, \omega, z \in \mathcal{J}$.
Using the primeness of R and the fact that $\tau(\mathcal{J}) \neq\{0\}$ is an ideal of R, we conclude:
$[\tau(u), \beta \theta(\omega)]=0$, for all $u \in \operatorname{Jor} F(\omega, v)=0$.
Consequently, since $\tau(\mathcal{J})$ is a nonzero ideal implies that for any $\omega \in I$ we have:
$\omega \in Z(R) \boldsymbol{o r} F(\omega, v)=0$
If $F(\mathcal{J}, \mathcal{J})=0$ then $F=0$ by lemma (2.6). So according to the hypothesis it must be $F(\mathcal{J}$, J) $\neq 0$.

A consideration of Brauer's trick leads to $\mathcal{J} \subset Z(R)$, hence R is commutative by lemma (2.5).

Theorem 3.3:

Let R be a prime ring, \mathcal{J} be a right ideal of
R. Suppose $F: \mathcal{J} \times \mathcal{J} \rightarrow R$ is a nonzero (σ, τ) -
Biderivation such that $\operatorname{ImF} \subset Z(R)$, then R is a commutative ring.

Proof:

Since $\operatorname{ImF} \subset Z(R)$, and F is a nonzero, there exists nonzero elements $u, v \in \mathcal{J}$ such that $F(u, v) \in Z(R)$. This means:
$[F(u, v), r]=0$, for any $r \in R$.
Replacing u by $u n$ in (1) and using (1), we arrive at:
$F(u, v)[\sigma(n), r]+[\tau(u), r] F(n, v)=0$, for all $u, v, n \in \mathcal{J}, r \in R$.

Taking $\sigma(n)=F(z, \omega), z, \omega \in$ Jimplies that: $[\tau(u), r] F\left(\sigma^{-1} F(z, \omega), v\right)=0$, for all $u, v, z, \omega \in$ $\mathcal{J}, r \in R$.

Putting $s r$ for r in (2) and using (2) leads to: $[\tau(u), s] \quad r F\left(\sigma^{-1} F(z, \omega), v\right)=0$, for all $u, v, z, \omega \in \mathcal{J}, r, s \in R$.

That is
$[\tau(u), s] \quad R F\left(\sigma^{-1} F(z, \omega), v\right)=0$, for all $u, v, z, \omega \in \mathcal{J}, s \in R$.

But R is a prime ring and F is nontrivial, so we have $[\tau(u), s]=0$, for all $u \in \mathcal{J}, s \in R$.

Therefore R is a commutative ring by lemma (2.5).

Theorem 3.4:

Let R be a prime ring, \mathcal{J} a nonzero ideal of R. Suppose $F: R \times R \rightarrow R$ is a nonzero $(\sigma, \tau)-$ Biderivation. If there exists an element $\omega \in \mathcal{J}$ satisfying $[F(u, v), \omega]_{\sigma, \tau}=0$, for all $u, v \in \mathcal{J}$ then $\omega \in Z(\mathcal{J})$.

Proof:

If R is commutative, then there is nothing to prove, so we can suppose R is noncommutative.

Let ω be an element of \mathcal{J} with:
$[F(u, v), \omega]_{\sigma, \tau}=0$, for all $u, v \in \mathcal{J}$.
That is
$F(u, v) \sigma(\omega)-\tau(\omega) F(u, v)=0$, for all $u, v \in \mathcal{J}$.

Putting $u z$ instead of u leads to:
$F(u, v) \sigma(z) \sigma(\omega)+\tau(u) F(z, v) \sigma(\omega)-\tau(\omega) F(u, v)$ $\sigma(z)-\tau(\omega) \tau(u) F(z, v)=0$, for all $u, v, z \in \mathcal{J}$.

In view of (1) the above relation reduces to: $F(u, v)[\sigma(z), \sigma(\omega)]-[\tau(\omega), \tau(u)] F(z, v)=0$, for all $u, v, z \in \mathcal{J}$.

Replacing u by ωu in (2) and using (2) implies that:
$D(\omega, y) \sigma(u)[\sigma(z), \sigma(\omega)]=0$, for all $u, v, z \in \mathcal{J}$.
That is
$\sigma^{-1}(F(\omega, v)) \mathcal{J}[z, \omega]=0$, for all $u, v, z \in \mathcal{J}$.
Since \mathcal{J} an ideal of R, we conclude that:
$\sigma^{-1}(F(\omega, v)) \mathcal{J} R[z, \omega]=0$, for all $u, v, z \in \mathcal{J}$.
Using the primeness of R, either
$\sigma^{-1}(F(\omega, v)) \mathcal{J}=0$ or $[z, \omega]=0$, for all $u, v, z \in \mathcal{J}$.
If $[z, \omega]=0$, for all $z \in \mathcal{J}$ then as a direct conclusion we have $\omega \in Z(\mathcal{J})$.

On the other hand
If $\sigma^{-1}(F(\omega, v)) \mathcal{J}=0$, since \mathcal{J} is a nonzero ideal of R, again the primeness of R leads to:
$\sigma^{-1}(F(\omega, v))=0$, for all $v \in \mathcal{J}$.
By theorem (3.1) there exists an invertible element $b \in \mathbb{Q}_{s}$ such that:
$\sigma^{-1}(F(\omega, v))=b[\omega, \mathrm{v}]$, for all $v \in \mathcal{J}$.
Consequently we get [ω, v]=Ofor all $v \in \mathcal{J}$, and hence $\omega \in Z(\mathcal{J})$.

Theorem 3.5:

Let R be a prime ring, \mathcal{J} a nonzero ideal of R. Suppose $F_{1}: R \rightarrow R$ is a (σ, τ)-derivationand $F_{2}: R \times R \rightarrow R$ is a (α, β)-Biderivation such that $\operatorname{Im} F_{2}=R$. If $F_{1} F_{2}(\mathcal{J}, \mathcal{J})=0$, then $F_{1}=0$ or $F_{2}=0$.

Proof:

For any $u, v, \omega \in \mathcal{J}$ we have:
$0=F_{1} F_{2}(u \omega, v)$
$=F_{1}\left(F_{2}(u, v) \alpha(\omega)+\beta(u) F_{2}(\omega, v)\right)$
$=F_{1} F_{2}(u, v) \sigma \alpha(\omega)+\tau F_{2}(u, v) F_{1} \alpha(\omega)$
$+F_{1} \beta(u) \sigma F_{2}(\omega, v)+\tau \beta(u) F_{1} F_{2}(\omega, v)$
According to our hypothesis, the above relation reduces to:
$\tau F_{2}(u, v) F_{1} \alpha(\omega)+F_{1} \beta(u) \sigma F_{2}(\omega, v)=0$, for all $u, v, \omega \in \mathcal{J}$.

Replacing u by $r u, r \in R$ in (1), we get:
$\tau F_{2}(r, v) \tau \alpha(u) F_{1} \alpha(\omega)+\tau \beta(r) \quad \tau F_{2}(u, v) F_{1} \alpha(\omega)$
$+F_{1} \beta(r) \sigma \beta(u) \sigma F_{2}(\omega, v)+\tau \beta(r) F_{1} \beta(u) \sigma F_{2}(\omega$, $v)=0$, for all $u, v, \omega \in \mathcal{J}$ and $r \in R$.

In view of (1) the above relation becomes: $\tau F_{2}(r, v) \tau \alpha(u) F_{1} \alpha(\omega)+F_{1} \beta(r) \sigma \beta(u) \sigma F_{2}(\omega, v)$ $=0$, for all $u, v, \omega \in \mathcal{J}, r \in R$.

Putting $r=\beta^{-1} F_{2}(z, v), z \in \mathcal{J}$ in (2)leads to: $\tau F_{2}\left(\beta^{-1} F_{2}(z, v), v\right) \tau \alpha(u) F_{1} \alpha(\omega)=0$, for all $u, v, z, \omega \in \mathcal{J}$.

Equivalently
$F_{2}\left(\beta^{-1} F_{2}(z, v), v\right) \alpha(\mathcal{J}) \tau^{-1} F_{1} \alpha(\mathcal{J})=\{0\}$, for all $v, z \in \mathcal{J}$.

Since $\alpha(\mathcal{J})$ is a nonzero ideal of R, using the primeness of R we get either $F_{1} \alpha(\mathcal{J})=\{0\}$ and consequently $F_{1}=0$ by [8, lemma 2].

Otherwise
$F_{2}\left(\beta^{-1} F_{2}(z, v), v\right)=0$, for all $v, z \in \mathcal{J}$.
The substitution $F_{2}(z, v) \beta(u)$ for $F_{2}(z, v)$ in (3) and using (3), we arrive at:

$$
\left(F_{2}(z, v)\right)^{2}=0, \text { for all } v, z \in \mathcal{J} .
$$

Again using the primeness of R leads to:

$$
F_{2}(z, v)=0, \text { for all } v, z \in \mathcal{J} .
$$

By application of lemma (2.6), we have $F_{2}=0$.

Theorem 3.6:

Let R be a prime ring, $a \in R$. Suppose that $F: R \times R \rightarrow R$ is a nonzero (σ, τ)-Biderivation satisfies that $[\operatorname{ImF}, a]_{\alpha, \beta}=0$, then $a \in Z(R)$ or $F\left(\tau^{-1} \beta(a), t\right)=0$.

Proof:

Define $h: R \rightarrow R$ by $h(x)=[x, a]_{\alpha, \beta}$ for all $x \in R$ then:
$h(x y)=h(x) y+x f_{1}(y)=f_{2}(x) y+x h(y)$, for all $x, y \in R$.

Where $f_{1}(x)=[x, \alpha(a)], f_{2}(x)=[x, \beta(a)]$, for all $a \in R$, therefore we have:
$h(F(r, t))=0$, for all $r, t \in R$.
Replacing r by $r s$ in (1), we get:
$0=h(F(r, t) \sigma(s)+\tau(r) F(s, t))$
$=h F(r, t) \sigma(s)+F(r, t) f_{1} \sigma(s)+f_{2} \tau(r) F(s, t)$
$+\tau(r) h F(s, t)$, for all $r, s, t \in R$
According to (1) the above relation reduces to:
$F(r, t) f_{l} \sigma(s)+f_{2} \tau(r) F(s, t)=0$, for all $r, s, t \in R$.
That is
$F(r, t)[\sigma(s), \alpha(a)]+[\tau(r), \beta(a)] F(s, t)=0$, for all $r, s, t \in R$.

The substitution $\tau^{-1} \beta(a)$ for r leads to:
$F\left(\tau^{-1} \beta(a), t\right)[\sigma(s), \alpha(a)]=0$, for $s, t \in R$
Putting $s c$ instead of s in (2) and using (2), we arrive at:
$F\left(\tau^{-1} \beta(a), t\right) \sigma(s)[\sigma(c), \alpha(a)]=0$, for all $c, s, t \in R$.

That is
$F\left(\tau^{-1} \beta(a), t\right) R[\sigma(c), \alpha(a)]=0$, for all $c, t \in R$.
Using the primeness of R we get the assertion of theorem.

Corollary 3.7:

Let R be a prime ring, \mathcal{J} a nonzero ideal of R. Suppose that $F: R \times R \rightarrow R$ is a nonzero (σ, τ) - Biderivation such that $[\operatorname{ImF}, \mathcal{J}]_{\alpha, \beta}=0$, then R is commutative ring.

Proof:

Let $[\operatorname{ImF}, \mathcal{J}]_{\alpha, \beta}=0$, then for all $u \in \mathcal{J}, t \in R$, we have either $u \in Z(R)$ or $F\left(\tau^{-1} \beta(u), t\right)=0$.

If $F\left(\tau^{-1} \beta(u), t\right)=0$ for all $u \in \mathcal{J}, t \in R$, since $U=\tau^{-1} \beta(\mathcal{J})$ is a nonzero ideal then in particularly we have $F(\mathcal{J}, \mathcal{J})=0$, using lemma (2.6) it follows that $F=0$ which contradicts the hypothesis.

Hence $\mathcal{J} \subset Z(R)$, which forces \mathcal{J} to be commutative, consequently R is commutative by lemma (2.4).

Theorem 3.8:

Let R be a 2 -torsion free prime ring, \mathcal{J} a nonzero ideal of R. Suppose that $F: R \times R \rightarrow R$ is a nonzero (σ, τ)-Biderivation such that $F(x \omega, y)=F(\omega x, y)$ for allx, $y, \omega \in \mathcal{J}$, then R is commutative ring.

Proof:

For any $u \in \mathcal{J}$ such that $F(u, y)=0$, for all $y \in \mathcal{J}$, like $u=[x, s]$ we have:
$F(\omega, y) \sigma(u)=F(\omega u, y)=F(u \omega, y)=\tau(u) F(\omega$, $y)$ for all $y, \omega \in \mathcal{J}$.

That is:
$[F(\omega, y), u]_{\sigma, \tau}=0$,for all $y, \omega \in \mathcal{J}$.
An application of theorem (2.6) implies that $u \in Z(\mathcal{J})$.

Hence the conclusion is: for any $u \in \mathcal{J}$ satisfy that $F(u, y)=0$, for all $y \in \mathcal{J}$, we get $u \in Z(\mathcal{J})$.

According to the above conclusion have:
$[x, s] \in Z(\mathcal{J})$, for all $x, s \in \mathcal{J}$ and consequently we have:
$[t,[x, s]]=0$, for all $x, s, t \in \mathcal{J}$.

The substitution $x s$ for s in the above relation gives:

$$
[t,[x, x s]]=[t, x][x, s]=0, \text { for all } x, s, t \in \mathcal{J} .
$$

Putting $s t$ for s leads to:
$[t, x] s[x, t]=0$, for all $x, s, t \in \mathcal{J}$.
Equivalently
$[t, x] \mathcal{I}[x, t]=0$, for all $x, t \in \mathcal{J}$.
But J an ideal of R, then:
$[t, x] R \mathcal{J}[x, t]=0$, for all $x, t \in \mathcal{J}$.
The primness of R leads us to conclude that either $[t, x]=0$ or $\mathcal{J}[x, t]=0$ for all $x, t \in \mathcal{J}$.

If $\mathcal{J}[x, t]=0$ for all $x, t \in \mathcal{J}$, since \mathcal{J} is a nonzero ideal of R, we have:

$$
[x, t]=0, \text { for all } x, t \in \mathcal{J}
$$

This means that \mathcal{J} is commutative, and by application of lemma (2.3), we have $\mathcal{J}=Z(\mathcal{J})$ $\subset Z(R)$.

Finally using lemma (2.4), we conclude that R is commutative.

Reference

[1]Passman D., "Infinite crossed products", Academic Press, San Diego, (1989).
[2]Guven E., "On (σ, τ)-derivation in prime Rings", Int. J. Contemp. Math. Sciences, 3 (26), 1289-1293, (2008).
[3]Posner E. C., "Derivations in prime Rings", Proc. Amer. Math. Soc.(8), 1093-1100, (1957).
[4]Herestein I.N, "Rings with involution", The University of Chicago Press, Chicago (1976).
[5]Ashraf M. and Nadeem-Ur- Rehmen, "On (σ, τ)-derivation in prime Rings", ArchivumMathematicum (BRNO) Tomus (38), 764-786, (2002).
[6]Bres̆ar M., "On generalized Biderivation and related maps", Univ. Maribor, Academic Press. Inc., 764-786, (1995).
[7]Aydin N. and Kaya K., "Some generalization in prime ring with (σ, τ) derivation", Doga Tr. Math. (16), 169-176, (1992).
[8]Glbasi O. and Aydin N., "Some results on Endomorphisms of prime ring which are (σ, $\tau)$-derivation", East Asian Math. J. (18), 33-41, (2002).
[9]Ceven Y. and Ozturk M. A., "Some properties of Bi- (σ, τ)-derivation in near ring", Commun. Korean Math. Soc. 22 (4), 487-491, (2007).
[10] Martindale W.S, "Prime rings satisfying a generalized polynomialidentity", J. algebra (12), 576-584, (1969)

الخلاصة

R R, قدمنا بحض الننائج المرتبطة بالعلاقة بين أبدالية الحلقة R برهنا إن الحلقة الأولية R نكون أبدالية إذا حقتت ثنائية

(i) $F(\mathcal{J}, \mathcal{J}) \subset C_{\alpha, \beta}$
(ii) $[I m F, \mathcal{J}]_{\alpha, \beta}=0$
(iii) $F(x \omega, y)=F(\omega x, y)$ for all $x, y, \omega \in \mathcal{J}$.

