On Commutativity of Rings with (σ, τ) -Biderivations

Auday Hekmat Mahmood

Department of Mathematic, College of Education, Al-Mustansiriyah University, Baghdad-Iraq.

Abstract

Let R be a prime ring with characteristic different from 2, \mathcal{I} be a nonzero ideal of R. in this paper, for $\alpha, \beta, \sigma, \tau$ as automorphisms of R, we present some results concerning the relationship between the commutativity of a ring and the existence of specific types of a (σ, τ)-Biderivation, we prove: (1) Suppose F:R×R→R is a nonzero(σ, τ)-Biderivation then R is a commutative ring if F satisfies one of the following conditions:

(i) $F(\mathcal{I}, \mathcal{I}) \subset C_{\alpha,\beta}(ii) [ImF, \mathcal{I}]_{\alpha,\beta} = 0$ (iii) $F(x\omega, y) = F(\omega x, y)$ for all $x, y, \omega \in \mathcal{I}$.

(2) Suppose $F_1: R \rightarrow R$ is a nonzero(σ , τ)-derivation and $F_2: R \times R \rightarrow R$ is a (α , β)-Biderivation with Im $F_2=R$, If $F_1F_2(\mathcal{I}, \mathcal{I})=0$ then $F_2=0$.

Keywords :Prime rings, Automorphisms, (σ, τ) -Biderivation.

1. Introduction

Throughout this paper *R* will be represent an associative ring with center Z(R), and α,β,σ,τ are automorphisms of *R*. Recall that a ring is called prime if for any a,b $\in R$, $aRb=\{0\}$ implies that either a=0 or b=0. The (σ,τ) center of *R* denoted by $C_{\sigma,\tau}$ and defined by $C_{\sigma,\tau}=\{c\in R: c\sigma(r)=\tau(r)c, \text{ for all } r\in R \}$. As usual [x, y] is denoted the commutator xy - yx, and we make use of the commutator identities [xy, z] = [x, z]y + x[y, z], [x, yz]= $[x, y]z + y[x, z], x,y,z\in R$. The symbol $[x, y]_{\alpha,\beta}$ stands for $x\alpha(y) - \beta(y)x$, also we will make extensive use of the following identities:

- $[xy, z]_{\alpha,\beta} = x[y, z]_{\alpha,\beta} + [x, \beta(z)] y$
- $= x[y, \alpha(z)] + [x, z]_{\alpha,\beta} y$
- $[x, yz]_{\alpha,\beta} = \beta(y)[x, z]_{\alpha,\beta} + [x, y]_{\alpha,\beta}\alpha(z)$

A biadditive mapping $F: R \times R \rightarrow R$ called a (σ, τ) -Biderivation if it satisfies the following:

i. $F(xy, z) = F(x, z)\sigma(y) + \tau(x)F(y, z)$ ii. $F(x, yz) = F(x, y)\sigma(z) + \tau(y)F(x, z)$

It is clear that the concept of a (σ,τ) -Biderivation includes the concept of Biderivation [9]. By \mathbb{Q}_r we will denote the Martindale ring of quotient of *R*. It is known that this ring introduced by Martindale in [10], can be characterized by the following four properties.

- (i) $R \subseteq \mathbb{Q}_r$.
- (ii) for every $q \in \mathbb{Q}_r$ there exist a nonzero ideal \mathcal{I} of R such that such that $q\mathcal{I} \subseteq R$.

- (iii) if $q \in \mathbb{Q}_r$ and \mathcal{I} is a nonzero ideal \mathcal{I} of R such that $q \mathcal{I} = 0$, then q=0.
- (iv) if \mathcal{I} is an ideal of R and $h: \mathcal{I} \longrightarrow R$ is a right R-module map, then there exist $q \in \mathbb{Q}_r$ such that h(u) = qu for all $u \in \mathcal{I}$.

Remarks:

- 1- The center of \mathbb{Q}_r , which denote by *C*, is called the extended centroid of *R*.
- 2- *C* is a field and $Z \subseteq C$.
- 3- The sub ring of \mathbb{Q}_r generated by *R* and *C* called the central closure of *R* and denoted by R_c .
- 4- The sub ring \mathbb{Q}_s of \mathbb{Q}_r where:
- $\mathbb{Q}_s = \{q \in \mathbb{Q}_r: \mathcal{J}q \subseteq R \text{ for some nonzero ideal } \mathcal{J} \text{ of } R\}$ is called the symmetric Martindale ring of quotient.
- 5- If $q_1Rq_2 = 0$ with $q_1, q_2 \in \mathbb{Q}_r$ implies that $q_1=0$ or $q_2=0$.

The study of the commutativity of prime rings with derivation initiated by E. C. Posner [3]. Over the last three decades, a lot of work has been done on this subject. Many authors have investigated the properties of prime or semiprime rings with a (σ, τ) -derivation.

Our objective in the present paper is to generalize some results in [2], [7] and [8], further we introduce other results, for instance: Ashraf and Rehman proved in [5] that, if d_1 and d_2 are two (σ,τ) -derivations of R such that $d_1\sigma = \sigma d_1$, $d_2\sigma = \sigma d_2$, $d_1\tau = \tau d_1$, $d_2\tau = \tau d_2$ and $d_1d_2(R)=0$, then $d_1=0$ or $d_2=0$. Here we prove, if U is a nonzero ideal of R, F_1 is a (σ,τ) derivation and F_2 is a (σ,τ) -Biderivation with $ImF_2=R$. If $F_1F_2(U, U)=0$ then either $F_1=0$ or $F_2=0$.

2. Preliminaries

In this section we recall some basic definition gather together a few results of general interest that will be needed.

Definition: [6]

Let *R* be ring. An automorphism σ of *R* is said to be *X*-inner if, there exists an invertible element $a \in \mathbb{Q}_s$ such that $\sigma(r)=ara^{-1}$ for all $r \in R$.

Lemma 2.1: [6]

Let *M* be any set. Suppose that *H*, $G:M \rightarrow \mathbb{Q}_r$ satisfy $H(s) \ge G(t) = G(s) \ge H(t)$, for all $s,t \in M$ and all *x* in some nonzero \mathcal{I} ideal of *R*. if $H \neq \{0\}$, then there exists $\lambda \in \mathbb{C}$ such that $G(s) = \lambda H(t)$.

Lemma 2.2: [1]

Let *R* be ring. Suppose σ is an automorphism of *R*. if there exist nonzero elements a_1 , a_2 , $a_3, a_4 \in \mathbb{Q}_r$ such that a_1r $a_2=a_3 \sigma(r)a_4$ for all $r \in R$, then σ is *X*-inner.

Lemma 2.3: [4]

Let *R* be a semiprime ring, and let \mathcal{I} be a right ideal of *R*, then $Z(\mathcal{I}) \subset Z(R)$.

<u>Lemma 2.4: [4]</u>

Let *R* be semiprime ring, \mathcal{I} a right ideal of *R*. If the ideal \mathcal{I} is a commutative, then $\mathcal{I} \subset Z(R)$. In addition if *R* is a prime ring then *R* must be commutative.

For prove of our results in this study, we need to introduce some preliminary lemmas.

<u>Lemma 2.5 :</u>

Let *R* be ring and *S* be a subring of *R*. if *F*: $S \times S \longrightarrow R$ is a (σ, τ) -Biderivation, then for any $x, y, z, u, v \in S$ we have:

 $F(x , y) \sigma(z)[\sigma(u), \sigma(v)] = [\tau(x), \tau(y)]\tau(z)$ F(u,v)

Proof:

We compute F(xu, yv) in two different ways. Since F is a (σ, τ) -Biderivation in the first argument, then we have:

 $F(xu, yv) = F(x, yv) \sigma(u) + \tau(x)F(u, yv)$

Using the fact that *F* is a (σ, τ) -Biderivation in the second argument, it follows:

$$F(xu, yv) = F(x, y)\sigma(v) \sigma(u) + \tau(y)F(x,v) \sigma(u) + \tau(x)F(u, y) \sigma(v) + \tau(x) \tau(y)F(u, y)$$

On the other hand, we have:

 $F(xu, yv) = F(xu, y) \sigma(v) + \tau(y)F(xu, v)$ = $F(x, y)\sigma(u) \sigma(v) + \tau(x)F(u, y) \sigma(v)$ + $\tau(y)D(x, v) \sigma(u) + \tau(y) \tau(x)F(u, y)$

Comparing the relations so obtained for F(xu, yv), we get:

 $F(x, y) [\sigma(u), \sigma(v)] = [\tau(x), \tau(y)] F(u, v)$, for all $x, y, u, v \in S$.

Putting zu for u, and using the identity $[s\omega, t] = [s, t]\omega + s[\omega, t]$, we obtain the assertion of the lemma.

O. Glbasi and N. Aydin Showed in [8 lemma 2] that: Let *R* be prime ring, \mathcal{I} be a nonzero ideal of *R* and *D* is a (σ, τ) -derivation of *R*. f *D* is trivial on \mathcal{I} then *D* itself is trivial. n the next lemma we extend this result to (σ, τ) -Biderivation.

Lemma 2.6:

Let *R* be prime ring, \mathcal{I} be a nonzero right ideal of *R*. Suppose that *F*: $R \times R \longrightarrow R$ is a (σ, τ) -Biderivation. If $F(\mathcal{I}, \mathcal{I}) = 0$ then F = 0.

Proof:

For any $u, v \in \mathcal{J}$, $r \in R$, we have: $0 = F(ur, v) = F(u, v) \sigma(r) + \tau(u) F(r, v)$ That is $\tau(u) F(r, v) = 0$, for all $u, v \in \mathcal{I}$, $r \in R$. Putting $us, s \in R$ instead of u in above relation gives: $\tau(u) \tau(s) F(r, v) = 0$, for all $u, v \in \mathcal{J}, r, s \in \mathbb{R}$. Hence $u R\tau^{-1}(F(r, v) = 0, \text{ for all } u, v \in \mathcal{I}, r \in \mathbb{R}.$ Using the primeness of R, since \mathcal{I} is a nonzero left ideal of *R*, we conclude that: F(r, v) = 0, for all $v \in \mathcal{I}$, $r \in \mathbb{R}$. Replacing *v* by *vt*, $t \in R$, we get: $\tau(v) F(r, t) = 0$, for all $v \in \mathcal{J}$, $r, t \in \mathbb{R}$. This means that: $\mathcal{I}\tau^{-1}(F(r, t)) = 0$, for all $r, t \in \mathbb{R}$. Since *R* is a prime ring and \mathcal{I} is a nonzero right ideal of R, it follows that F = 0.

3. (σ, τ) -Biderivation and commutativity of prime rings

<u>Theorem3.1:</u>

Let *R* be a non-commutative prime ring and $F:R \times R \longrightarrow R$ be a nonzero (σ, τ) -Biderivation, then there exists an invertible element $b \in \mathbb{Q}_s$ such that $\sigma^{-1}(F(x, y)) = b [x, y]$.

Proof:

According to lemma (2.6), the mapping F satisfies that:

 $F(x, y) \quad \sigma(z)[\sigma(u), \sigma(v)] = [\tau(x), \tau(y)]\tau(z)$ $F(u, v), \text{ for all } x, y, z, u, v \in R.$

That is

 $\sigma^{-1}(F(x,y)) \ z[u, v] = \theta([x, y])\theta(z)\sigma^{-1}(F(u, v))$ for all $x, y, z, u, v \in R$, where $\theta = \sigma^{-1} \circ \tau$ is an automorphism of *R*.

Since *R* is a non-commutative ring and $F \neq 0$, we can find $a_1 = \sigma^{-1}(F(x, y)) \neq 0$, $a_2 = [u, v] \neq 0$, $a_3 = [\theta(x), \theta(y)] \neq 0$ and $a_4 = \sigma^{-1}(F(u, v)) \neq 0$, then we have: $a_1 z \ a_2 = a_3 \ \theta(z) \ a_4$, for all $z \in R$.

Hence by lemma (2.2) we conclude that θ is *X*-inner, that is $\theta(s) = asa^{-1}$ for some $a \in \mathbb{Q}_s$. Therefore:

 $\sigma^{-1}(F(x,y))z[u,v] = a \quad [x, y] za^{-1}\sigma^{-1}(F(u,v)),$ for all *x*, *y*, *z*, *u*, *v* $\in \mathbb{R}$.

Left multiplication by a^{-1} leads to: $a^{-1}\sigma^{-1}(F(x,y))z[u,v]=[x, y] za^{-1}\sigma^{-1}(F(u,v))$, for all *x*, *y*, *z*, *u*, *v* \in *R*.

Let $M=R\times R$, note that maps $H,G: M \rightarrow \mathbb{Q}$ rdefined by H(x,y)=[x,y],

 $G(x,y)=a^{-1}\sigma^{-1}(F(x,y))$ satisfy all the requirements of lemma(2.1). So there exist $\lambda \in C$ such that:

$$G(x, y) = \lambda H(x, y).$$

That is:

 $a^{-1}\sigma^{-1}(F(x, y)) = \lambda[x, y]$, for all $x, y \in R$.

Equivalently

 $\sigma^{-1}(F(x,y)) = b[x,y]$, for all $x, y \in R$, and $b = \lambda a$.

Note that $b \neq 0$ for $F \neq 0$, whence b is invertible.

Theorem 3.2:

Let *R* be a prime ring, \mathcal{I} be a nonzero ideal of *R*. suppose that *F*: $R \times R \longrightarrow R$ is

anonzero(σ , τ)-Biderivation such that $F(\mathcal{I}, \mathcal{I}) \subset C_{\alpha,\beta}$. Then *R* is a commutative ring.

Proof:

According to hypothesis, for any $u, v, \omega \in \mathcal{I}$ we have:

 $[F(u\omega, v), r]_{\alpha,\beta} = 0$, for all $r \in R$(1)

Equivalently

 $F(u, v)[\sigma(\omega), \alpha(r)] + [F(u, v), r]_{\alpha,\beta}\sigma(\omega) + \tau(u)[F(\omega, v), r]_{\alpha,\beta} + [\tau(u), \beta(r)]$ $F(\omega, v)=0$

According to (1) the above relation reduces to: $F(u, v) [\sigma(\omega), \alpha(r)] + [\tau(u), \beta(r)] F(\omega, v) = 0$, for all $u, v, \omega \in \mathcal{I}, r \in R$.

Taking $\theta(\omega)$ instead of *r* in the above relation where $\theta = \alpha^{-1}\sigma$, we get:

$$[\tau(u), \beta\theta(\omega)]F(\omega, v)=0, \text{ for all } u, v, \omega \in \mathcal{I}.$$
.....(2)

Putting *uz*instead of u in (2) and using (2), we arrive at:

 $[\tau(u), \beta\theta(\omega)]\tau(z) F(\omega, v)=0, \text{ for } u, v, \omega, z \in \mathcal{I}.$

Using the primeness of *R* and the fact that $\tau(\mathcal{I})\neq \{0\}$ is an ideal of *R*, we conclude:

 $[\tau(u), \beta\theta(\omega)]=0$, for all $u \in JorF(\omega, v)=0$.

Consequently, since $\tau(\mathcal{I})$ is a nonzero ideal implies that for any $\omega \in I$ we have:

 $\omega \in Z(R) \text{ or } F(\omega, v) = 0$

If $F(\mathcal{I}, \mathcal{I})=0$ then F=0 by lemma (2.6). So according to the hypothesis it must $beF(\mathcal{I}, \mathcal{I}) \neq 0$.

A consideration of Brauer's trick leads to $\mathcal{I} \subset Z(R)$, hence *R* is commutative by lemma (2.5).

Theorem 3.3:

Let *R* be a prime ring, \mathcal{I} be a right ideal of *R*. Suppose $F:\mathcal{I} \times \mathcal{I} \longrightarrow R$ is a nonzero (σ,τ) -Biderivation such that $ImF \subset Z(R)$, then *R* is a commutative ring.

Proof:

Since $ImF \subset Z(R)$, and *F* is a nonzero, there exists nonzero elements $u, v \in \mathcal{I}$ such that $F(u, v) \in Z(R)$. This means:

[F(u, v), r] = 0, for any $r \in R$(1)

Replacing u by un in (1) and using (1), we arrive at:

 $F(u, v) [\sigma(n), r] + [\tau(u), r] F(n, v)=0, \text{ for all } u, v, n \in \mathcal{I}, r \in \mathbb{R}.$

Taking $\sigma(n)=F(z, \omega), z, \omega \in \mathcal{I}$ implies that: $[\tau(u), r] F(\sigma^{-1}F(z, \omega), v)=0$, for all $u, v, z, \omega \in \mathcal{I}, r \in \mathbb{R}$. (2)

Putting *sr* for *r* in (2) and using (2) leads to: $[\tau(u), s] r F(\sigma^{-1}F(z, \omega), v)=0$, for all $u,v,z, \omega \in \mathcal{J}, r,s \in \mathbb{R}$.

That is

 $[\tau(u), s] R F(\sigma^{-1}F(z, \omega), v)=0$, for all $u, v, z, \omega \in \mathcal{I}, s \in R$.

But *R* is a prime ring and *F* is nontrivial, so we have $[\tau(u), s]=0$, for all $u \in \mathcal{I}, s \in R$.

Therefore *R* is a commutative ring by lemma (2.5).

Theorem 3.4:

Let *R* be a prime ring, \mathcal{I} a nonzero ideal of *R*. Suppose *F*: $R \times R \longrightarrow R$ is a nonzero (σ, τ) -Biderivation. If there exists an element $\omega \in \mathcal{I}$ satisfying $[F(u, v), \omega]_{\sigma,\tau} = 0$, for all $u, v \in \mathcal{I}$ then $\omega \in Z(\mathcal{I})$.

Proof:

If R is commutative, then there is nothing to prove, so we can suppose R is noncommutative.

Let ω be an element of \mathcal{I} with: [$F(u, v), \omega$]_{σ,τ} =0, for all $u, v \in \mathcal{I}$.

That is

 $F(u, v)\sigma(\omega) - \tau(\omega)F(u, v) = 0, \text{ for all } u, v \in \mathcal{I}.$ (1)

Putting *uz* instead of *u* leads to:

$$\begin{split} F(u, v)\sigma(z)\sigma(\omega) + \tau(u)F(z, v) \ \sigma(\omega) - \tau(\omega)F(u,v) \\ \sigma(z) - \tau(\omega) \ \tau(u)F(z, v) = 0, \text{ for all } u, v, z \in \mathcal{I}. \end{split}$$

In view of (1) the above relation reduces to: $F(u, v)[\sigma(z), \sigma(\omega)]-[\tau(\omega), \tau(u)]F(z, v)=0$, for all $u, v, z \in \mathcal{J}$(2)

Replacing u by ωu in (2) and using (2) implies that:

 $D(\omega, y)\sigma(u)[\sigma(z), \sigma(\omega)] = 0$, for all $u, v, z \in \mathcal{I}$.

That is

 $\sigma^{-1}(F(\omega, v))\mathcal{I}[z, \omega] = 0, \text{for all } u, v, z \in \mathcal{I}.$

Since \mathcal{I} an ideal of R, we conclude that: $\sigma^{-1}(F(\omega, v)) \mathcal{I} R [z, \omega] = 0$, for all $u, v, z \in \mathcal{I}$.

Using the primeness of *R*, either

 $\sigma^{-1}(F(\omega, v)) \mathcal{I} = 0 \text{ or } [z, \omega] = 0, \text{ for all } u, v, z \in \mathcal{I}.$

If $[z,\omega]=0$, for all $z \in \mathcal{I}$ then as a direct conclusion we have $\omega \in Z(\mathcal{I})$.

On the other hand

If $\sigma^{-1}(F(\omega, v)) \mathcal{I}=0$, since \mathcal{I} is a nonzero ideal of R, again the primeness of R leads to:

 $\sigma^{-1}(F(\omega, v))=0$, for all $v \in \mathcal{I}$.

By theorem (3.1) there exists an invertible element $b \in \mathbb{Q}_s$ such that:

 $\sigma^{-1}(F(\omega, v)) = b \ [\omega, v], \text{ for all } v \in \mathcal{I}.$

Consequently we get $[\omega, v]=0$ for all $v \in \mathcal{I}$, and hence $\omega \in Z(\mathcal{I})$.

Theorem 3.5:

Let *R* be a prime ring, \mathcal{I} a nonzero ideal of *R*. Suppose $F_1: R \longrightarrow R$ is a (σ, τ) -derivation and $F_2: R \times R \longrightarrow R$ is a (α, β) -Biderivation such that $ImF_2=R$. If $F_1F_2(\mathcal{I},\mathcal{I})=0$, then $F_1=0$ or $F_2=0$.

Proof:

For any $u, v, \omega \in \mathcal{J}$ we have: $\partial = F_1 F_2(u\omega, v)$ $= F_1(F_2(u, v)\alpha(\omega) + \beta(u)F_2(\omega, v))$ $= F_1F_2(u, v)\sigma\alpha(\omega) + \tau F_2(u, v)F_1\alpha(\omega)$ $+ F_1\beta(u)\sigma F_2(\omega, v) + \tau\beta(u)F_1F_2(\omega, v)$

According to our hypothesis, the above relation reduces to:

 $\tau F_2(u, v)F_1\alpha(\omega) + F_1\beta(u)\sigma F_2(\omega, v) = 0, \text{ for all } u, v, \omega \in \mathcal{I}.$ (1)

Replacing *u* by *ru*, $r \in R$ in (1), we get: $\tau F_2(r,v) \tau \alpha(u) F_1 \alpha(\omega) + \tau \beta(r) \quad \tau F_2(u,v) F_1 \alpha(\omega)$ $+F_1 \beta(r) \sigma \beta(u) \sigma F_2(\omega,v) + \tau \beta(r) F_1 \beta(u) \sigma F_2(\omega,v)$ v) = 0, for all *u*, *v*, $\omega \in \mathcal{I}$ and $r \in R$.

In view of (1) the above relation becomes: $\tau F_2(r, v) \tau \alpha(u) F_1 \alpha(\omega) + F_1 \beta(r) \sigma \beta(u) \sigma F_2(\omega, v)$ =0, for all *u*,*v*, $\omega \in \mathcal{I}$, $r \in \mathbb{R}$(2)

Putting $r=\beta^{-1}F_2(z, v), z \in \mathcal{J}$ in (2)leads to: $\tau F_2(\beta^{-1}F_2(z, v), v) \tau \alpha(u)F_1\alpha(\omega)=0$, for all $u, v, z, \omega \in \mathcal{J}$.

Equivalently

$$\begin{split} F_2(\beta^{-1}F_2(z,v),v) \; \alpha(\mathcal{I})\tau^{-1}F_1\alpha(\mathcal{I}){=}\{0\}, & \text{for all} \\ v,z \in \mathcal{I}. \end{split}$$

Since $\alpha(\mathcal{I})$ is a nonzero ideal of *R*, using the primeness of *R* we get either $F_1\alpha(\mathcal{I})=\{0\}$ and consequently $F_1=0$ by [8, lemma 2].

Otherwise

 $F_2(\beta^{-1}F_2(z, v), v) = 0, \text{for all } v, z \in \mathcal{I}.$ (3)

The substitution $F_2(z, v)\beta(u)$ for $F_2(z, v)$ in (3) and using (3), we arrive at:

 $(F_2(z, v))^2 = 0$, for all $v, z \in \mathcal{I}$.

Again using the primeness of *R* leads to:

 $F_2(z, v)=0$, for all $v, z \in \mathcal{I}$.

By application of lemma (2.6), we have $F_2=0$.

Theorem 3.6:

Let *R* be a prime ring, $a \in R$. Suppose that $F:R \times R \longrightarrow R$ is a nonzero (σ, τ) -Biderivation satisfies that $[ImF, a]_{\alpha,\beta} = 0$, then $a \in Z(R)$ or $F(\tau^{-1}\beta(a), t) = 0$.

Proof:

Define *h*: $R \rightarrow R$ by $h(x) = [x, a]_{\alpha,\beta}$ for all $x \in R$ then:

 $h(xy) = h(x) y + x f_1(y) = f_2(x)y + x h(y)$, for all $x, y \in \mathbb{R}$.

Where $f_1(x) = [x, \alpha(a)], f_2(x) = [x, \beta(a)]$, for all $a \in R$, therefore we have:

h(F(r, t)) = 0, for all $r, t \in \mathbb{R}$(1)

Replacing r by rs in (1), we get: $0 = h(F(r, t) \sigma(s) + \tau(r)F(s, t))$ $= hF(r, t)\sigma(s) + F(r, t) f_1\sigma(s) + f_2\tau(r) F(s, t)$ $+ \tau(r)hF(s, t), \text{ for all } r, s, t \in R$

According to (1) the above relation reduces to:

$$F(r, t) f_1 \sigma(s) + f_2 \tau(r) F(s, t) = 0$$
, for all $r, s, t \in \mathbb{R}$.

That is

 $F(r, t) [\sigma(s), \alpha(a)] + [\tau(r), \beta(a)]F(s, t)=0$, for all $r, s, t \in \mathbb{R}$.

The substitution $\tau^{-1}\beta(a)$ for *r* leads to:

 $F(\tau^{-1}\beta(a), t) [\sigma(s), \alpha(a)] = 0$, for $s, t \in \mathbb{R}$(2)

Putting *sc*instead of *s* in (2) and using (2), we arrive at:

 $F(\tau^{-1}\beta(a), t) \sigma(s) [\sigma(c), \alpha(a)] = 0$, for all $c, s, t \in \mathbb{R}$.

That is

 $F(\tau^{-1}\beta(a), t) R[\sigma(c), \alpha(a)] = 0$, for all $c, t \in R$.

Using the primeness of R we get the assertion of theorem.

Corollary 3.7:

Let *R* be a prime ring, \mathcal{J} a nonzero ideal of *R*. Suppose that $F: R \times R \longrightarrow R$ is a nonzero (σ, τ) - Biderivation such that $[ImF, \mathcal{J}]_{\alpha,\beta} = 0$, then *R* is commutative ring.

Proof:

Let $[ImF, \mathcal{J}]_{\alpha,\beta} = 0$, then for all $u \in \mathcal{J}, t \in R$, we have either $u \in Z(R)$ or $F(\tau^{-1}\beta(u), t) = 0$.

If $F(\tau^{-1}\beta(u), t)=0$ for all $u \in \mathcal{I}, t \in \mathbb{R}$, since $U=\tau^{-1}\beta(\mathcal{I})$ is a nonzero ideal then in particularly we have $F(\mathcal{I}, \mathcal{I})=0$, using lemma (2.6) it follows that F=0 which contradicts the hypothesis.

Hence $\mathcal{J} \subset Z(R)$, which forces \mathcal{J} to be commutative, consequently *R* is commutative by lemma (2.4).

<u>Theorem 3.8</u>:

Let *R* be a 2-torsion free prime ring, \mathcal{I} a nonzero ideal of *R*. Suppose that $F: R \times R \longrightarrow R$ is a nonzero (σ, τ) -Biderivation such that $F(x\omega, y) = F(\omega x, y)$ for all $x, y, \omega \in \mathcal{I}$, then *R* is commutative ring.

Proof:

For any $u \in \mathcal{I}$ such that F(u, y) = 0, for all $y \in \mathcal{I}$, like u = [x, s] we have:

 $F(\omega, y) \sigma(u) = F(\omega u, y) = F(u\omega, y) = \tau(u)F(\omega, y)$ y)for all $y, \omega \in \mathcal{I}$.

That is:

 $[F(\omega, y), u]_{\sigma,\tau} = 0$, for all $y, \omega \in \mathcal{I}$.

An application of theorem (2.6) implies that $u \in Z(\mathcal{I})$.

Hence the conclusion is: for any $u \in \mathcal{I}$ satisfy that F(u, y) = 0, for all $y \in \mathcal{I}$, we get $u \in \mathbb{Z}(\mathcal{I})$.

According to the above conclusion have:

 $[x, s] \in Z(\mathcal{I})$, for all $x, s \in \mathcal{I}$ and consequently we have:

[t, [x, s]] = 0, for all $x, s, t \in \mathcal{I}$.

The substitution *xs* for *s* in the above relation gives:

 $[t, [x, xs]] = [t, x] [x, s] = 0, \text{ for all} x, s, t \in \mathcal{I}.$

Putting *st* for s leads to:

[t, x] s [x, t] = 0, for all $x, s, t \in \mathcal{I}$.

Equivalently

 $[t, x]\mathcal{I}[x, t] = 0$, for all $x, t \in \mathcal{I}$.

But \mathcal{I} an ideal of R, then:

 $[t, x] R \mathcal{I}[x, t] = 0, \text{ for all} x, t \in \mathcal{I}.$

The primness of *R* leads us to conclude that either [t, x] = 0 or $\mathcal{I} [x, t] = 0$ for all $x, t \in \mathcal{I}$.

If $\mathcal{I}[x, t]=0$ for all $x,t \in \mathcal{I}$, since \mathcal{I} is a nonzero ideal of R, we have:

[x, t] = 0, for all $x, t \in \mathcal{I}$.

This means that \mathcal{I} is commutative, and by application of lemma (2.3), we have $\mathcal{I} = Z(\mathcal{I}) \subset Z(R)$.

Finally using lemma (2.4), we conclude that R is commutative.

Reference

- [1]Passman D., "Infinite crossed products", Academic Press, San Diego, (1989).
- [2]Guven E., "On (σ, τ) -derivation in prime Rings", Int. J. Contemp. Math. Sciences, 3 (26), 1289-1293, (2008).
- [3]Posner E. C., "Derivations in prime Rings", Proc. Amer. Math. Soc.(8), 1093-1100, (1957).
- [4]Herestein I.N, "*Rings with involution*", The University of Chicago Press, Chicago (1976).
- [5]Ashraf M. and Nadeem-Ur- Rehmen, "On (σ, τ) -derivation in prime Rings", ArchivumMathematicum (BRNO) Tomus (38), 764-786, (2002).
- [6]Brešar M., "On generalized Biderivation and related maps", Univ. Maribor, Academic Press. Inc., 764-786, (1995).
- [7]Aydin N. and Kaya K., "Some generalization in prime ring with (σ, τ) -derivation", Doga Tr. Math. (16), 169-176, (1992).

- [8]Glbasi O. and Aydin N., "Some results on Endomorphisms of prime ring which are (σ, τ)-derivation", East Asian Math. J. (18), 33-41, (2002).
- [9]Ceven Y. and Ozturk M. A., "Some properties of Bi- (σ, τ) -derivation in near ring", Commun. Korean Math. Soc. 22 (4), 487-491, (2007).
- [10] Martindale W.S, "Prime rings satisfying a generalized polynomialidentity", J. algebra (12), 576-584, (1969)

الخلاصة

لتكن R حلقة أولية مميزها لايساوي $\mathcal{J},2 \{0\} \neq$ مثالي في R. في هذا البحث ولأجل σ , σ , τ يشاكلات تقابلية على R, قدمنا بعض النتائج المرتبطة بالعلاقة بين أبدالية الحلقة R ووجودية أنواع خاصة من ثنائيات المشتقات– (σ, τ) . برهنا إن الحلقة الأولية R تكون أبدالية إذا حققت ثنائية المشتقة– (σ, τ) غير الصفرية $\leftarrow R : R : R$ أحد الشروط

المستفه (σ, τ) غير الصعريه $K F: K \times K \to R$ احد الشروط التالية: (i) $F(f, \tau) = C$

(i)
$$F(J, J) \subset C_{\alpha,\beta}$$

(ii) $[ImF, \mathcal{J}]_{\alpha,\beta} = 0$
(iii) $F(x\omega, y) = F(\omega x, y)$ for all $x, y, \omega \in \mathcal{J}$.