
Journal of Al-Nahrain University                   Vol.19 (2), June, 2016, pp.117-123                                           Science 

117 

Global Stability of Harmful Phytoplankton and Herbivorous Zooplankton  

with Holling Type IV Functional Response 
 

Rehab Noori Shalan, Dina Aljaf and Hiba Abdullah Ibrahim 

Department of Mathematics, College of Science, University of Baghdad. 

E-mail: rehab.shalan38@yahoo.com. 

 

Abstract 

In this paper harmful phytoplankton and herbivorous zooplankton model with Hollimg type IV 

functional response is proposed and analyzed. The local stability analysis of the system is carried 

out. The global dynamics of the system is investigated with the help of the Lyapunov function. 

Finally, the analytical obtained results are supported with numerical simulation.  
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Introduction 
Plankton is the basis of the entire aquatic 

food chain. Phytoplankton, in particular, 

occupies the first trophic level. Plankton 

performs services for the Earth: it serves as 

food for marine life, gives off oxygen and also 

absorbs half of the carbon dioxide from the 

Earth's atmosphere. The dynamics of a rapid 

(or massive) increase or decrease of plankton 

populations is an important subject in marine 

plankton ecology and generally termed as a 

'bloom'. Harmful algal blooms (HABs) have 

adverse effects on human health, fishery, 

tourism, and the environment. In recent years, 

considerable scientific attention has been 

given to HABs, see for example 

[5,7,12,21,23,25]. On the other hand, ecology 

relates to the study of living beings in relation 

to their living styles. Research in the area of 

the theoretical ecology was initiated by Lotka 

(1925) and by Volterra (1926). Since then 

many mathematicians and ecologists 

contributed to the growth of this area of 

knowledge. Consequently, several 

mathematical models deal with the dynamics 

of prey predator models involving different 

types of functional responses have been 

proposed and studied, see for example 

[1,2,9,11,13,14] and the references therein. 

Keeping the above in view, in this chapter a 

harmful phytoplankton interacting herbivorous 

zooplankton with Holling type IV functional 

response have been proposed and studied. 

 

 

 

 

Mathematical model formulation 
Consider the simple phytoplankton-

zooplankton system with Holling typeIV 

functional response which can be written as:  
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Here )t(x and )t(y  represent the densities 

of phytoplankton and zooplankton at time t  

respectively. While the parameters 0a  is the 

intrinsic growth rate of the phytoplankton 

population; 0b  is the strength of intra-

specific competition among the phytoplankton 

species; the parameter 0  can be interpreted 

as the half-saturation constant in the absence 

of any inhibitory effect; the parameters 0  

is a direct measure of the predator immunity 

from the phytoplankton; the  zooplankton 

consumer consume their food according to 

Holling type IV of functional response, where 

0  is the predation rate on the zooplankton; 

0e  is the conversion rate of predation into 

higher level species; here 0 represents the 

liberation rate of toxic substance by the 

harmful phytoplankton x ; 0D represent the 

maximum zooplankton ingestion rates for the 

toxic substance produced by phytoplankton x .  

 Finally 0h  represent the natural death rate 

for the zooplankton. The initial condition for 

system (1) may be taken as any point in the 

region  002  y,x:)y,x(R . Obviously, 

the interaction functions in the right hand side 

of system (1) are continuously differentiable 
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functions on R2
 , hence they are Lipschitizian. 

Therefore the solution of system (1) exists and 

is unique. Further, all the solutions of system 

(1) with non-negative initial condition are 

uniformly bounded as shown in the following 

theorem. 

 

Theorem (1): 
All the solutions of system (1) which 

initiate in R2
  are uniformly bounded.  

 

Proof: 

Let ))t(y),t(x(( be any solution of the 

system (1) with non-negative initial condition 

)y,x( 00 . According to the first equation of 

system (1) we have  
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Then by solving this differential inequality 

we obtain that  
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So the time derivative of )t(W  along the 

solution of the system (1) 
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Again by solving the above linear 

differential inequality we get  
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Consequently, for t  we have  
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Hence all solution of system (1) enter the 

region 
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Existence of equilibrium points 
The system (1) have at most three non-

negative equilibrium points, two of them 

namely ),(F 000  , ),(F
b
a

x 0  always exist. 

While the existence of other equilibrium points 

is shown in the following: 

The positive equilibrium point 

)y,x(Fxy
 exists in the interior of the first 

quadrant if and only if there is a positive 

solution to the following set of algebraic 

nonlinear equations:  
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From (2a) we have 
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Clearly, 0y if the following condition holds 

 bxa  

while x , represents the positive root to the 

following equation 
 

01
2

2
3

3 AxAxAxA)x(f   ...................... (3) 
 

Where 

DA 3 ,    

)(2 hDA   ,  hDeA  1 , 

hA 0  

 

So by using Descartes rule of signs, Eq. (3) 

has either no positive root and hence there is 

no equilibrium point or two positive roots 

depending on the following condition holds: 
 

hDe    

 

The stability analysis 

In this section the stability (locally as well 

as globally) analysis of the above mentioned 

equilibrium points of system (1) are 

investigated analytically. 
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The Jacobian matrix of system (1) at the 

equilibrium point ),(F 000   can be written as  
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Therefore, the equilibrium point 0F  is a 

saddle point. 

The Jacobian matrix of system (1) at the 

equilibrium point ),(F
b
a

x 0  can be written as 
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Hence, the eigenvalues of xJ  are: 
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Therefore, xF  is locally asymptotically 

stable if and only if 
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While xF  is saddle point provided that  
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Finally, the Jacobian matrix of system (1) at 

the positive equilibrium point )y,x(Fxy
  in 

the R.Int 2
  can be written as: 
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Note that according to the stability theorem 

for the two dimensional dynamical system, 

)y,x(Fxy
 is locally asymptotically stable 

provided that 
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Therefore the positive equilibrium point 

)y,x(Fxy
 of system (1) is locally 

asymptotically stable in R.Int 2
 under the 

following necessary and sufficient conditions 
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In the following the persistence of system 

(1) is studied. It is well known that the system 

is said to be persists if and only if each species 

is persist. Mathematically, this is means that, 

system (1) is persists if the solution of system 

with positive initial condition does not have 

omega limit sets on the boundary planes of its 

domain. However, biologically means that, all 

the species are survivor. In the following 

theorem the persistence condition of the 

system (1) is established using the Gard and 

Hallam technique [10]. 

 

Theorem (2): 

System (1) is uniformly persist provided 

that condition (4b) holds. 
 

Proof: 

Consider the following function, 

21 pp
yx)y,x(  where 21,i,pi   are 
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Note that, since ),(F 000  and ),(F
b
a

x 0

are the only possible omega limit sets of the 

solution of system (1) on the boundary of 

R.Int 2
 , in addition  

210 dpap)E(   



Rehab NooriShalan 

120 

0)( 2)(2 






 


phE
b
Da

baba

abe
x





 

 

Clearly 00  )E( for all sufficiently large 

positive value of 1p with respect to 2p , while 

0 )E( x , for all values of 2p under 

condition (4b).Hence   represents persistence 

function and system (1) is uniformly 

persistent.                                      ■ 

Since system (1) may have either two 

equilibrium points or no equilibrium points in 

the 2
R.Int  of the xyF . The global stability of 

the equilibrium point xF  in 2
R  is investigated 

as shown in the following. 

 

Global stability of the system 

In this section the global stability of the 

equilibrium points xF in 2
R  is investigated as 

shown in the following theorem. 

 

Theorem (3): 

Assume that the equilibrium point xF  is 

locally asymptotically stable in the 2
R , and let 

the following conditions: 
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Hold, then xF  is globally asymptotically 

stable in 2
R . 

 

Proof:  

Consider the following positive definite 

function: 
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b
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choosing the positive constants as 11 c  and 

e
c 1
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Therefore, 01 
dt

dU
under condition (7), 

hence 1U is strictly Lyapunov function. 

Therefore, xF is globally asymptotically stable 

in the 2
R .                                            ■ 

 

Numerical analysis 

In this section the global dynamics of 

system (1) is studied numerically. System (1) 

is solved numerically for different sets of 

parameters and for different sets of initial 

conditions, and then the attracting sets and 

their time series are drown as shown below. 

Now, for the following set of hypothetical 

parameters 
 

0.01.=D 0.02,=0.25,=e 0.01,=h 

2,= 0.75,= 1,= 0.2,=b 0.25,=a        





 .... (8) 

 

The attracting sets along with their time 

series of system (1) are drown in Fig. (1). Note 

that from now onward, in the time series 

figures, we will use the following 

representation: blue color represents the 

trajectory of phytoplankton, green color 

represents the trajectory of zooplankton. 
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Fig. (1): (a) The solution of system (1) 

approaches asymptotically to the positive 

equilibrium point starting from different 

initial values for the data given by Eq. (8). (b) 

Time series of the attractor in (a) starting at 

(0.85, 0.75). (c) Time series of the attractor in 

(a) starting at (0.75, 0.65) (d) Time series of 

the attractor in (a) starting at (0.65, 0.55). 

 

Clearly, as shown in Fig. (1), system (1) has 

a globally stable positive equilibrium point

0.48) 0.08,(Fxy   in the 2
R.Int , hence all the 

species coexists and the system persists. 

However, for the parameters values given by 

Eq. (8) with the intrinsic growth rate 0.5   a  , 

system (1) approaches to the periodic 

dynamics in 2
R.Int , see the following figure. 

 

 

 
Fig. (2): (a) Globally asymptotically stable 

limit cycle of system (1) starting from 

different initial values for the data given by 

Eq. (8) with 0.5   a  . (b) Time series of the 

attractor in (a) starting at (0.85, 0.75). (c) 

Time series of the attractor in (a) starting at 

(0.75, 0.65) (d) Time series of the attractor in 

(a) starting at (0.65, 0.55). 
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Discussion and Conclusion 

In this paper, a mathematical model 

consisting of a Holling type IV phytoplankton- 

zooplankton model with intra specific 

competition has been studied analytically as 

well as numerically. The condition for the 

system (1) to be uniformly bounded and 

persistence have been derived. The local as 

well as global stability of the proposed system 

has been studied. The effect of intrinsic growth 

rate of the phytoplankton species on the 

dynamical behavior of system (1) is studied 

numerically and the trajectories of the system 

are drowned. According to these formats the 

following conclusions are obtained: 

 

1. For the set of hypothetical parameters 

values given in Eq.(8), system (1) 

approaches asymptotically to a globally 

asymptotically stable point )y,x(Fxy


.
 

2.  As the intrinsic growth rate of the 

phytoplankton decreasing then the system 

(1) approaches to an asymptotically stable 

positive equilibrium point, otherwise the 

system has periodic dynamics. So this 

parameter has a stabilizing effect on the 

system. 
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 خلاصةال

في هذا البحث تم اقتراح و تحليل نظام العوالق النباتية 
والعوالق الحيوانية مع دالة الاستجابة لهولنك ذات النوع الرابع. 
السلوك الديناميكي المحلي للنظام تمت دراسته. كما تم 
مناقشة السلوك الديناميكي الشامل بمساعدة دالة ليابانوف, 

التحليلية الناتجة باستخدام المحاكاة واخيرا تم تدعيم النتائج 
العددية وقد لوحظ بان النظام يمتلك اما نقطة استقرار او 

 .ديناميكية دورية
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


