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1. Introduction 

The BSM can be described as a particular 

approach to stabilize dynamic systems and non-

linear control problems. So, it is a very useful 

approach for linearization feedback for non-linear 

systems with uncertainties. The procedure to do 

this is particularly driven by cases in which plant 

non-linearity and control input. So, it requires to 

recompense and make up for the impact of the non-

linearity are in various equations.  

The ability of BSM to transact with those systems 

whose feedback are neither linearizable nor even 

completely controllable. Also, it has the ability to 

transact with not only control synthesis defies, but 

also much limit classes of systems such as 

unmeasured values or states, unknown 

parameters or arguments, zero dynamics systems, 

and nuisance stochastic system.  

The BS designs for boundary control in PDE’s is 

given by Krstic et al. in 2008, [1]. Dynamic 

adaptive and non-linear BS resolves are explained 

in details by Krstic et al. in 1995, [2]. They 

characterized suitable techniques for output 

feedbacks and full state. They mentioned specific 

parameters for adaptation, tuning functions and 

design models. In addition, Similarly, Sepulchre et 

al. in 1997 [3], made the same extensions to 

forward, passivity and cascaded design models. 

Fossen and Berge in 1997, introduced and studied 

the concept of the vectorial BS for the first time, 

where they described the structural properties of 

non-linear , multi-input and output systems [4]. 

This pliable them to spread design and analysis of 

non-linear system by the vectorial BSM. The 

stochastic systems presented by Krstic and Deng 

in 1998 [5], and specifically concentrated on the 

stability and the regulation for them. During 1999 

till 2001, Loria et al. Making use of the BS designs, 

[6] and Fossen et al. in [7], gave two methods for 

“integral action” of non-linear systems. The 

development of the BS approach initially was for 

PDEs. The way of a continuum BS is developed for 

stabilizing parabolic linear PDEs was first 

presented and explained by Smyshlyaev and Krstic 

in 2004, [8]. In 2007 Vazquez and Krstic [9] 

designed BS for linearized Navier-Stokes 

equations. In 2008, Krstic made use of an infinite-

dimensional BS transformation, to connect with Lf 

[10]. The results include in finite dimensional 

systems which consist of ODE plant state and 

delay state. The technique to design a least-

squares estimator that uses unfiltered regress was 

presented and introduced by Krstic in 2009, [11].  

Krstic considered the problem of dynamic adaptive 

non-linear control and introduced the 1st least-

squares-based adaptive non-linear control design 

in addition. This comes from a Lf. In 2010, Krstic 
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presented a procedure for recompensing input 

delay of arbitrary length in non-linear control 

systems [12]. This procedure came from the 

infinite dimensionality of the actuator dynamics 

and non-linear character of the plant which results 

in a non-linear feedback operator. This method is a 

non-linear version of the Smith predictor and its 

various predictor based modifications for linear 

plants. In addition, Krstic in 2010 developed a 

time varying Lyapunov functional equation for the 

feedback closed-loop system and constructed the 

exponential stability [13]. The state selection for a 

transport PDE which has propagation with a non-

constant speed is the challenge in this case. 

 

In 2013, the non-linear dynamic systems with time 

delays was given by Bekiaris-Liberis and Krstic, 

the delay is considered as a non-linear function of 

the state at a previous time and depends on the 

delay parameter itself [14]. Also, Krstic and 

Bekiaris-Liberis in 2013 [14], revised many token 

methods but in general results on non-linear 

control in the infinite-dimensional precision. First, 

they presented certain designs for non-linear 

ODEs with constant time-varying or state-

dependent input delays that appeared in 

considerable applications of networks control. 

Second, they gave a design for non-linear ODEs 

with a wave (string) PDE at its input, which is 

motivated by the drilling dynamics in petroleum 

engineering. Third, they gave design for systems of 

two coupled non-linear first-order hyperbolic 

PDEs, which are motivated by slugging flow 

dynamics in petroleum production in off-shore 

facilities. The main objective of this research 

article is to apply the BSM for stabilizating system 

and solving such as certain type of Riccati matrix 

DEs which are considered here to be 2×2 system of 

ODEs. 

 

 

 

 

 

2.BSM for Dynamical Systems 

There are specific theories and methods that are 

using to ensure the stability of the Non-linear 

systems without regarding the inner dynamics of 

the system. In 1990, Petar V. Kokotovic and others 

developed the BSM as a technique for designing 

and stabilizing controls for a special class of non-

linear dynamical systems. These systems are 

driven from subsystems that radiate out from an 

irreducible subsystem that may be stabilized using 

some other methods. Due to this recursive 

structure, the designer can first start the design 

process at the known-stable system and “back out” 

new controllers that gradually stabilize each outer 

subsystem. The process stops when the final 

external control is obtained. Hence, this process is 

known as BS. BSM is a particular approach to 

stabilize dynamical systems and is particularly 

successful in the area of non-linear control 

problems while the idea of integrator BSM seems 

to be appeared simultaneously and often implicitly 

in [3] and [4]. Studying the stabilizability through 

an integrator BS introduced by Kokotovic and 

Sussmann in 1989, [5]. Integrator BS approach 

appeared as a recursive design technique used by 

Saberi et al. (1990), etc. [6] 

For illustration purpose, consider the   order 

dynamical system: 

 

1 1 1 2 1

2 2 1 2 2

3 3 1 2 3

( , ,..., )

( , ,..., )

( , ,..., )

n

n

n

x f x x x u

x f x x x u

x f x x x u

 

 

 

 

1 2( , ,..., )n n n nx f x x x u  }
  
 

  
 

 (1) 

where ( ) nx t R  is the state vector of the system,   

,if  
i = 1, 2, …, n; are either linear or non-linear 

functions and  i ,iu  = 1, 2, …, n; are the controller 

input. 

 

 

----------------------------------------------------------------------------------------------------------------------------- ---------------------- 

The BS design of system (1) is a recursive method, which guarantees the global stable performance of the system. By using the 

BS design at the ith step the ith order subsystem may be stabilized with respect to the Lf 
,iV
by designing certain 

,iV
in 

addition to the design of the virtual control ix
 and a control input function 

.iu
 The analysis of this method may be 

summarized by follows:  
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Step 1: We consider the stability of the first equation in (1)  

 1 1 1 2 1( , ,..., )nx f x x x u 
 (2) 

where 2x
 is regarded as a virtual controller, then define 1 1z x

 and derive the dynamics of the new 

coordinates transformation as: 

1 1 1 1 2 1( , ,..., )nz x f z x x u  
 (3) 

for the design of        to stabilizes system (2). 

Now, construct the first Lf in quadratic form as follows: 

1 1 1 1 1( ) TV z z p z
 (4) 

Then the derivative of 1V
with respect to the time is given by: 

1 1 1 1

TV z Q z 
 (5) 

where 1Q
 is a positive definite matrix. Then 1V

 is a negative definite function in   . Thus by Lyapunov 

stability theory, system (2) is asymptotically stable. Clear that the virtual control           and the state 

feedback input u1 makes the system (1) asymptotically stable. The function        should be estimated while 

2z
is considered as controller. 

Step 2: Define the error 2z
between x2 and        to be defined as: 

2 2 1 1( )z x z 
 (6) 

Consider the 1 2,z z
-subsystem given by: 

1 1 1 2 1

2 2 1 2 3 1 1 2

( , ,..., )

( , , ,..., ) ( )

n

n

z f z x x u

z f z z x x z u

 

  
 (7) 

where 3x
 is a virtual controller of subsystem (7), and assume that it is equal to 2 1 2( , )z z

 and it makes the 

subsystem (7) asymptotically stable. Consider the Lf defined by: 

2 1 2 1 1 2 2 2( , ) ( ) TV z z V z z p z 
 (8) 

The derivative of 2V
 is: 

2 1 1 1 2 2 2 0T TV z Q z z Q z   
 (9) 

where 1 2,Q Q
 are positive definite matrices. Then 2V

 is a negative definite function on .nR  Thus by Lyapunov 

theory, the subsystem (7) is asymptotically stable.  

Similarly, the virtual control 3 2 1 2( , )x z z
 may be defined and the state feedback input 2u

 make the 

subsystem (7) asymptotically stable. 

 

Step n: So on, proceeding similarly as in steps 1 and 2, define the error variable zn as: 

                       (10) 

consider 1 2 3( , , ..., )nz z z z
 subsystem given by: 

1 1 1 2 1

2 2 1 2 3 2

1 2 1 1 2

( , )

( , , )

( , ,..., ) ( , ,..., )n n n n n n

z f z z u

z f z z z u

z f z z z z z z u 

  


  


     (11) 

and consider the Lf defined by: 

1 2 3 1 1 2 1( , , ..., ) ( , ,..., ) T

n n n n n n nV z z z z V z z z z p z  
 (12) 
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Therefore, derivative of nV
 is: 

1 1 1 2 2 2 ... 0T T T

n n n nV z Q z z Q z z Q z     
  (13) 

where 1 2 3, , ,... nQ Q Q Q
 are positive definite matrices. Then nV

 is a negative definite function on .nR  Thus by 

Lyapunov stability theory the subsystem (11) is stable. The virtual control 1 1 2 1( , ,..., )n n nx z z z  
 and the 

state feedback input nu
 makes the subsystem (11) asymptotically stable. Thus by Lyapunov stability theory 

the system (1) is globally asymptotically stable for all initial conditions 
(0) .n

ix R
 

 

3. Application of the Method for 2×2 Riccati Matrix Differential Equations 

In this section, the BSM which is proposed above in section (2) will be used to stabilize the following Riccati
n n  system: 

( ) ( ) ( ) ( ) ( ) ( ) 0TX t X t A A X t X t BX t C t    
 

For simplicity and illustration, we will take n  2, and apply the BSM to derive the related transformed 

system which is asymptotically stable. 

Now, introduce control functions as auxiliary variables to stabilize this system, i.e., for 2 2  system; consider 

the Riccati system: 

( ) ( ) ( ) ( ) ( ) ( ) 0TX t X t A A X t X t BX t C t u     
 

or equivalently: 

11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12

21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22

T
x x x x a a a a x x x x b b x x

x x x x a a a a x x x x b b x x

            
              

            

1 211 12

3 421 22

0 0

0 0

u uc c

u uc c

    
      

      
which implies: 

11 12 11 11 21 12 12 11 22 12 11 11 21 21 11 12 21 22

21 22 11 21 21 22 12 21 22 22 12 11 22 21 12 12 22 22

x x a x a x a x a x a x a x a x a x

x x a x a x a x a x a x a x a x a x

        
       

        

11 11 11 12 21 12 21 11 22 21 11 11 12 12 12 12 21 12 22 22

21 11 11 12 21 22 21 11 22 22 21 11 12 12 22 21 11 12 22 22

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x b x b x x b x b x x b x b x x b x b x

x b x b x x b x b x x b x b x x b x b x

      
 

       (
      
      

)  (
    

    
)  

(
  
  

) 

Therefore, carrying out matrix operations, the following related system of ODE’s with control functions is 

obtained: 

11 11 11 21 21 11 11 21 12 11 11 11 12 21 12 21 11 22 21 11 1

12 11 12 21 22 12 11 22 12 11 11 12 12 22 12 21 12 21 22 12 2

21 12 11 22 21 11 21 21 22 21 11 1

( ) ( ) 0

( ) ( ) 0

(

x a x a x a x a x x b x b x x b x b x c u

x a x a x a x a x x b x b x x b x b x c u

x a x a x a x a x x b x

          

          

     1 12 21 22 21 11 22 21 21 3

22 12 12 22 22 12 21 22 22 21 11 12 12 22 22 21 12 22 22 22 4

) ( ) 0

( ) ( ) 0

b x x b x b x c u

x a x a x a x a x x b x b x x b x b x c u

     

          
 

and carrying out some simplification, the last system will be reduced to:  

2
11 11 11 11 11 21 21 21 12 12 11 21 21 11 12 22 12 21 11 1

12 11 22 12 12 22 12 11 11 12 11 12 11 22 22 12 22 12 2

2
21 12 11 11 22 21 21 22 11 11 21 12 21 21 11 2

2

( )

( )

x a x b x a x a x b x x b x x b x x c u

x a a x a x a x b x x b x x b x x c u

x a x a a x a x b x x b x b x x

         

         

        2 22 21 22 21 3

2
22 12 12 22 22 12 21 11 12 21 12 21 22 21 12 22 22 22 22 42

b x x c u

x a x a x a x b x x b x x b x x b x c u






   


           (14) 
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where 11,x 12 ,x 21x
 and 22x

 are system states and 1,u 2 ,u 3u
 and 4u

 are the control inputs. The objective is 

to design a state feedback control to stabilize the original Riccati system. The analysis of this criterion may be 

carried out as in the following steps: 

Step 1: In this step, consider the stability of the first equation of the system (14), by defining 11 11z x
 and 

derive the dynamics of the new coordinates as: 

11 11z x
 

2

11 11 11 11 21 21 21 12 12 11 21 21 11 12 22 12 21 11 12a z b z a x a x b z x b z x b x x c u         
 (15) 

and suppose that, the first Lf as follows:  

2

1 11

1

2
V z

 (16) 

The time derivative of 1V
 becomes: 

1 11 11V z z
 

2

11 11 11 11 11 21 21 21 12 12 11 21 21 11 12 22 12 21 11 12z a z b z a x a x b z x b z x b x x c u             (17) 

Assume that the controller            . If: 
2

1 11 11 21 21 21 12 12 11 21 21 11 12 22 12 21 11u b z a x a x b z x b z x b x x c       
 (18) 

and letting 1 11( ) 0,z 
 then equation (18) will take the form: 

2
1 11 112V a z 

 (19) 

Hence, the zero solution is asymptotically stable. 

Step 2: Define the variable 12 12 1 11( ),z x z 
 so we can write the second equation of system (14) as: 

2

12 11 22 12 12 22 12 11 11 12 11 12 11 22 21 12 22 12 22 12 2( )z a a z a x a x b z x b x x b z b z x c u          
 

and a second Lf may be chosen to by: 

2
2 1 12

1

2
V V z 

 
Therefore, the time derivative of which becomes:  

2 1 12 12V V z z 
 

11 11 12 11 22 12 12 22 12 11 11 12 11 12 11 222 [ ( )a z z a a z a x a x b z x b x x         
2

21 12 22 12 22 12 2]b z b z x c u  
 

Now, if: 
2

2 12 22 12 11 11 12 11 12 11 22 21 12 22 12 22 12u a x a x b z x b x x b z b z x c      
 (20) 

and 2 11 12( , ) 0,z z 
 then: 

2 2
2 11 11 11 22 122 ( )V a z a a z   

 

Step 3: Define a new variable 21 21 2 11 12( ),z x z z 
 so we can rewrite the third equation of system (14) as: 

2
21 12 11 11 22 21 21 22 11 11 21 12 21 21 11 22 22 21 22 21 3( )z a x a a z a x b x z b z b x x b z x c u          

 
and choosing the Lf to be define as:  

2
3 2 21

1

2
V V z 

 

Then the derivative of 3V
 is given by: 

3 2 21 21V V z z 
 

2 
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2 2
11 11 11 22 12 21 12 11 11 22 21 21 22 11 11 212 ( ) [ ( )a z a a z z a x a a z a x b x z          

2
12 21 21 11 22 22 21 22 21 3b z b x x b z x c u   

 ] 

Also, if: 
2

3 12 11 21 22 11 11 21 12 21 21 11 22 22 21 22 21u a x a x b x z b z b x x b z x c      
 (21) 

and letting 3 11 12 13( , , ) 0,z z z 
 then: 

2 2 2
3 11 11 11 22 12 11 22 212 ( ) ( )V a z a a z a a z     

 

Step 4: Define the variable 22 22 3 11 22 13( , , )z x z z z 
 and hence we can rewrite the last equation of system 

(15) as: 
2

22 12 12 22 22 12 21 11 12 21 12 21 22 21 12 22 22 22 22 42z a x a z a x b x x b x z b x z b z c u         
 

choose the fourth Lf: 

2
4 3 22

1

2
V V z 

 

and hence the time derivative of 4V
 is given by: 

4 3 22 22V V z z 
 

2 2 2
11 11 11 22 12 11 22 21 22 12 12 22 22 12 212 ( ) ( ) ( 2a z a a z a a z z a x a z a x          

2
11 12 21 12 21 22 21 12 22 22 22 22 4)b x x b x z b x z b z c u    

 
If: 

2
4 12 12 12 21 11 12 21 12 21 21 12 22 22 22 22u a x a x b x x b x b x z b z c      

 (22) 

then: 
2 2 2 2

4 11 11 11 22 12 11 22 21 22 222 ( ) ( ) 2V a z a a z a a z a z      
 

Finally, substitute 1,u 2 ,u 3u
 and 4u

 given by equations (18), (20), (21) and (22) back in system (14), where: 

11 11,z x 12 12 1 11( ),z x z  21 21 2 11 12( ),z x z z  22 22 3 11 22 13( , , )z x z z z 
and so we get the feedback 

control functions:  
2

1 11 11 21 21 21 12 12 11 21 21 11 12 22 12 21 11

2
2 12 22 12 11 11 12 11 12 11 22 21 12 22 12 22 12

2
3 12 11 21 22 11 11 21 12 21 21 11 22 22 21 22 21

4 12 12 12 21 11 12 2

u b x a x a x b x x b x x b x x c

u a x a x b x x b x x b x b x x c

u a x a x b x x b x b x x b x x c

u a x a x b x x

       

      

      

   2
1 12 21 21 12 22 22 22 22b x b x z b x c








      (23) 

Then we get the following transformed system of ODE’s related or equivalent to (14): 

11 11 11

12 11 22 12

21 11 22 21

22 22 22

2

( )

( )

2

x a x

x a a x

x a a x

x a x

  


   


   
    (24) 

System (24) may be written in matrix form as: 
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11 1111

12 1211 22

11 2221 21

2222 22

2 0 0 0

0 ( ) 0 0

0 0 ( ) 0

0 0 0 2

x xa

x xa a

a ax x

ax x

    
    

     
     
             

or: 

X AX  

The matrix A  is a diagonal matrix and hence have the following eigenvalues:  

1 112 ,a   2 11 22 3( )a a    
 and 4 222a  

 

Therefore, if 11 0a 
 and 22 0,a 

 then 1, 1, 1  and 4  will be negative and then the system is 

asymptotically stable, i.e., using the feedback control functions (23) imply that system (14) is asymptotically 

stable and the solution is given by: 

11

11 22

11 22

22

2
11

( )
12

( )
21

2
22

( )

( )

( )

( )

a t

a a t

a a t

a t

x t e

x t e

x t e

x t e



 

 










 (24) 

 

4. Illustration Examples 

As an illustration for the above approach the following examples will be given: 

 

Example (1): 

Consider the Riccati matrix differential equation (14) with   [
  
  

] ; 

  [
  
  

]; and   [
  
  

]. Hence, using the above suggested approach, the solution that given by (24) will 

become: 

                   ;                         ; 

                        ; and                     

which may be represented in figure (1), and it is very clearly that the Riccati matrix differential equation is 

stabilizable. 

 

 
Figure 1. The asymptotic solutions of example (1). 
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Example (2): 

Consider the Riccati matrix differential equation 

(14) with   [
  
   

];                     [
   
   

];  

                  and            [
   
   

].  

Hence using the above suggested approach, the 

solution given by (24) will become: 

 

                   ;                         ; 

                        ; and                
     

which may be represented in figure (2), and it is 

also stabilizable.  

 

 
Figure 2. The asymptotic solutions of example (2). 

 

5. Conclusions 

The results showed an improvement in the 

stability of the system after applying the BS 

control technique, and a reliable time performance 

is obtained. Noteworthy, that for systems with 

multiple inputs it is advisable to control them 

making use of this technique. Hence, the flexibility 

can be obtained in designing the control input law 

during the simulation. Recursively, the non-

linearity which ensures asymptotic stability is 

ignored based on BS controller uses Lfs in each 

integrator level. 
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