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1. Introduction

Fractional calculus is a very strong tool and it is
considered as one of the best ways to express the
physical models and engineering processes. The part
fractional calculus takes in many different fields such
as mechanics, chemistry, economics is very significant
and important [1-3]. Integro-differential equations play
a fundamental role in the studies of linear and
nonlinear functional analysis. There are several
definitions for the fractional derivatives but recently,
the authors in [4] gave a new uncomplicated definition
based on the usual derivative definition which is called
conformable fractional derivative. Fractional partial
integro-differential equations (FPIDEs) occur naturally
in many different fields of science, engineering and
social sciences. Applications of FPIDEs can be found in
many fields such as [5-12]. This paper is concerned
with obtaining approximate solutions of the following
CFPIDE:

Ty, t) =g, )+ 17 1] y(y,t), (1)
subject to
v(0,8) = b(t) 2)

where y and t are the independent variables, g(y, t) is
a known function, y € C,,([0,1] x [0,1]) is an unknown
function to be evaluated, T;’ is the conformable
fractional derivative and I7, 13’,’ are the conformable
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fractional integral of order v € (E’ 1) / (E’E) with
respect to t and y, respectively. The paper is organized
as follows: in section 2, some of the basic concepts of
the conformable fractional order derivative are
presented. In section 3, we introduce the shifted
Legendre polynomials. While in section 4, existence of a
unique solution for problem (1)-(2) is proved. The
proposed method for solving problem (1)-(2) is
introduced in section 5. In section 6, the accuracy of the
proposed technique is checked by solving some
numerical examples. Finally, a conclusion has been
given.

2. Preliminaries:
This section presents the definition of the Conformable
fractional derivative and some of its properties that has
been used in this article.

Definition (1), [4]: The conformable fractional order
derivative of order v of a functiony:[0,) = Ris given
by:

y(t+et =)=y (D)
£

TE (@) = limgg

for allt > 0,v € (0,1). If y is v-differentiable in some
(0,a),a > 0,and lim,_,+ y(”) (t) exists, then define

y(") (0) = lim,_o+ y(”) (o).
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Definition (2), [4]:

¥

1-v

FO® = PEy) = f ds,

a
and the integral here is the usual Riemann integral, and

v € (0,1),a=0.
Properties, [4]:

1. TP (P)=ptP™”, VpeR
2. If, in addition, f is differentiable, then T}Y(f)(t) =

1-v ﬂ
v — (0.

T(af +bg) =aT’(f) +bT"(g), Va,bER
TV(A) = 0, for any constant function f (1) = A.
T(fg) = f(T"(g9)) + g (T*(f)).

v (£) = 4TI T"@)
T(g)— 72 , g 0.

o kW

Theorem (1), [4]: Let f:(a,b) » R, v € (0,1)iffis a
differentiable function. Then for all t > a we have

IZTE(F)() = f(t) = fa).

Theorem (2), [13]: TPI7(f)(t) = f(t), for T = 0, where
f is any continuous function in the domain of I.

3. Shifted Legendre Polynomials (SLP)

The Legendre polynomial of degree j, denoted by L;(7),
defined on the interval [—1,1], can be generated as
follows [14]:

(2j+1)
U+1

Liy (1) = (M) = 5L (@, j=12,.

On the other hand, the SLPs, denoted by £, ;(t) defined
on [0,1], can be introduced if we assume =%— 1,

then the polynomials are constructed using the
following formula,

(24+1) (2t
Lipn® =705 (T_ )Ll.;’(t) -
L@, F=12,. 3)

Lo(t) = 1and £, (t) = %— 1.1#0

The orthogonality relation can be introduced as

L . .
1 _ P L=z
Jy Lui®L,;(®)dt = { 02’l+1 Ps i (4)
A function y(t) € L,(0,1) , can be decomposed
regarding the SLPs as:
v(t) = 2oLy, (1) (5)
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where the coefficients c; can take the form

25+1 .
¢; = w foy®L,; Odt, j=0,1,.. (6)

If we truncate the summation in equation (5) after n
terms, then y(t) will be approximated by v,,(t) as:

Ya(t) = Xjzo 6L, (1), (7)

Remark (1): A function y(y, t) of two independent
variables defined for (y, t) € [0,1] X [0,1] can be
expanded in terms of the SLPs as:

Ynm (%, 8) = Yo Xito €ijLyi (V)L (D), (8)

where a;; are given by

Cij =
@i+ D@+ [ [} v0,0L,0)L, ;(Odydt
(9)

4. Existence and Uniqueness:
In this section, the existence and uniqueness of
problem (1)-(2) will be introduced. The proof of the
main result is based on the concept of Banach fixed
point theorem.

Definition (3), [15]: Let (B,||.||) be a Banach space
and letT:B - B. ThenT is said to be k-contraction if
there exist a constant k € (0,1) such that

ITu = Tv|| < k|lu — vl (10)

forallu,v € B.

Theorem (3), [15]: Let (B, ||.|| ) be a Banach space and
let T:B = B be a k-contraction. Then Ty =y has a
unique solution, that is, T has only one fixed point y* € B.

Definition (4): Let ||. || 1: X = R* where
lvllg2 = maxey,pefoixo) Yy, e ™t (11)
for some suitable A > 0.

Lemma (1): The function y€ X is a solution of
problem (1)-(2) if and only if y(y, t) satisfies

Y, t) = b(t) + 10 gy, ) + 1) 1y 1)y (y, )
(12)

Proof: Apply ,I;) on both sides of equation (1), yields
TYYW, 0 = )R g,t) + 19 9 1Y (3, £)-

According to equation (2) and theorem (1), we have
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Y, t) = b(t) + 109, ) + 10 09 1)y (y, £).

And hence the result is obtained.

Theorem (4): Let T: (X, |I. Iz 2) = (X, |l. llz,2) be defined
as
Ty, t) = b(t) + y[p g, ) + Iy Ly y Y, 1)

1

7—-8v
and

[(217 1)(4v-3)(10v— 7)]

ve(31)/(55)

then T has a unique solution.

(13)
Proof: Letvy,, v, € X, we have
ITY:(7,8) = T2 (0, O] = |, 1013, I [y (7, ©) = v2 (v, O]

< fyf J‘Z ly:1(w,s)=y2(w,s)| dudsdz

|u1 Vllsl 'l)ll 1—1.7|

< lly; = Y2||B,A

t Aus
foy f() foz mdudsdz,

Making the change of variables y; = Aus, 0 < y; < Azs,

we get

1
ITyi(r, ) =Ty (v, ) < 5 llvi = vallza

v=lekt1 du,dsdz.

t 1 A
foy fo Szl_—v fo ” Hq

By using Holder’s inequality, for v € G, 1) / (170 Zz)

we have

Azs 1
fo m et dpy <

(folzs g 20D d,ul)l/2 (folzs et d,ul)l/z <

(Azs)?V™1 4.

(2v-1)
Then
ITy: (v, ) =Ty, (y, )| < A,,(zv 5 vy~ vallsa
y L'sz 1 2'U 1 AZS
Jy Iy e dsdz

Ty, (v, 1) — T\/z(y,t)l_(2 ||Y1 V2llza
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Yt 3v-2.2(w-1),1zs
Jy I 2% 7%s e’ dsdz.

By change of variable u, = Azs, 0 < u, < Azt, we get

ITy: (v, 0) = Tyz(y.t)l_(2 ||Y1 V2llza

Azt
0 AZV— f M 2(v- 1)6#2 d# dZ

7 75
,—), we get

10710

Using Holder inequality for v € G, 1) / (

Azt
j 'uzz(v_l)el’-Zduz
0

Azt 1/2 Azt 1/2
< ( f pp* ) duz> ( f g2k duz>
0

(/12)41’ 3
~ (4v - 3)

Azt

Then

Av-1p2(

Ty2(x, )] < (2v-1)(4v-3)

Ty, (x,t) — ||Y1 Y251

foy ZSv—4e/12tdZ_

And finally using change of variables u; = Azt,
0 < uz < Ayt, we get

Av—12@ (v—

Ty, (., t) — Ty, (y, t)|—m||\(1 Y2llpa
AVt sy—4_us
f H3 et3dys

Asv 3

By using Holder inequality forv € G, 1)/(1,5), we

10’10
have

Ayt sp—4
Sy us* T tetsdus <

(foflyt M32(5v—4) dy3)1/2 (fo/lytezﬂ3 dy3)1/2 <

- (10v-7)

11017—7

Ayt

Then

[Ty, (y,t) — Ty, (y, )|

Av—llz(v—1)15v—4
- (2v—1)(4-v—3)(1017—7)

Ayt

Iy, — Y2||B,/1

( Av—llz(v—l)lsv—‘l-

Ayt _
(2v—1)(4v—3)(10v—7))e V1 = Y2llpa-

Then

Av—1/12(v—1)15v—4

1Tv: = TY2lls2 < (o) V1 — Yallsa:
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So, by equation (13) T is a k-contraction with

Av—1/12(v—1)15v—4

ke = ((21:—1)(41:—3)(101:—7)) <1

Therefore, by Banach fixed point theorem there exist a
unique fixed point which represent the solution.

5. The Approach:

In this section, we will apply a modified semi analytic
iterative method for solving problem (1)-(2). To start
the approach let us present the following steps:

Step 1: Suppose thaty,(y,t)is an initial guess to
problem (1)-(2) and it satisfy the following equation

Yo, ) = g, t),
subject to

Y0(0,8) = b(®).
Therefore,

Yo(y,t) = b(t) + Iy g(y, 0).

The initial guess y,(y,t) can be decomposed by using
SLPs as:

Yo, t) = X, Z;‘rl:o cij L1;(y) L;(0),

where n,m € N and

1 01
c;j = Qi+ 12+ 1)[0 J; Yo, )Ly (W)L, ;(H)dydt,

Step 2: To find y;(y,t) in the next iteration, the -
following initial value problem need to be solved:

Ty vy ) =g, )+ IF I vo(y, t),
subject to

v1(0,t) = b(®).

Hence
yit) =b@®) + 1L, gy, 0) + I I Lys(y,5).

Similarly, v, (y, t) also can be decomposed using SLPs as:
yi(y,t) = ¥, ZT:O Cij L1,i(3’) L1,j(t):
where

ey = Qi+ D@ +D ) [0, DL, 0Ly (O dydt,
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Step 3: For finding v, (v, t), Y5 (¥, t), ... etc an iterative
procedure can be constructed as:

T Y10, ) = g, ) + I Iy (0, 0),
Subjectto  y,.1(0,t) = b(t), n=1.23,..
Le. Yani(r, ) =bO)+ gy, 0) + Iy, (y,t).
Where v, (y,t) = Xito Xjzo Cij L1,(¥) L,;(8),

and
¢y = Qi+ DQj+ D) [, [ a0 L, 0Ly (Ddydt,

i=01,..,nj=01,.,m

Note that each vy, (y,t),n = 0,1,2, ..., are considered to
be the solutions of problem (1)-(2).

6. Illustrative Examples:

To demonstrate the efficiency and accuracy of the
proposed method some illustrative examples are given
in this section.

Example (1): Consider the following linear CFPIDE.

T;).GSY(y, =g t)+ I§’~6513‘3'65y(y, t) (14)
subject to
v(0,6) = 0, (15)
27 27 13 53
g(y,t) = 0.5y20 + 0.5t3y20 — 0.14514t20y20 —
73 53
0.02584tz20y20.

The exact solution of problem (14)-(15) isy(y,t) =
2
= (t* +1).

Table 1 represent the absolute error of problem (14)-
(15) foryz andys. Following figure 1 and figure 2
which shows a comparison between the solution
resulted from the proposed method and the exact
solution of problem (14)-(15) and the absolute error
for k = 3,5, respectively.
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Table 1. The absolute errors of the solutions for

problem (14)-(15).

y vy Ys(,y)
0 0 0
0.1 7.117e-11 1.833e-15
0.2 1.082e-9 9.468e-15
03 4.827e¢-9 1.794e-13
04 1.461e-8 1.214e-12
0.5 3.622e-8 5.535e-12
0.6 7.811e-8 1.975e-11
0.7 1.497e-7 592e-11
0.8 2.564e-7 1.557e-10
0.9 3.912e-7 3.693e-10
1 5.2e-7  8.065e-10
(a)

(b)

()

v.(nt)

/_ - - -

y.(nt)

Figure 1. The compression between the proposed
method and the exact solution of problem (14)-(15).
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(a)

a0

absolute Error for k=3

(b)

2w

&

JlU"“

21072

absolute error for k=5

Figure 2. The absolute error between the approximate
solution and the exact solution of problem (14)-(15).

Example (2): Consider the following linear CFPIDEs.

Ty*%y(y, t) = g, t) + 125818y (v, 1), (16)
subject to the initial condition
v(0,¢) = 2, (17)

71 79 29 29 129
gy, t) = 2y50 — 2.18245t50y50 — 0.6683t50y 50.
The exact solution of problem (12)-(13) isy(y,t) =
2t +y2.

Table 2 represent the absolute error of problem (16)-
(17) for yz andys. Following figure 3 and figure 4
which shows a comparison between the solution
resulted from the proposed method and the exact
solution of problem (16)-(17) and the absolute error
for k = 3,5, respectively.
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Table 2. The absolute errors of the solutions for
problem (16)-(17).
Yy viy) vsy)
0 0 0
0.1 5.073e-7 2.478e-9
0.2 9.511e-7 8.222e-9
0.3 1.832e-6 1.803e-8
0.4 4.58e-6 3.476e-8
0.5 1.127e-5 6.391e-8
0.6 2.518e-5 1.154e-7
0.7 5.183e-5 2.059e-7
0.8 1.006e-4 3.62e-7
0.9 1.866e-4 6.234e-7
1 3.332e-4 1.048e-6

Example (3): Consider the following linear CFPIDEs.

T8y, t) = g, t) + [P L%y(y, 1), (18)
subject to the initial condition
v(0,t) = t3, (19)
gy, 0) =
3 43 17 77

23
t2yz0 — 3y20 — 2tyz0 + 0.305577t20y20 —
7 37 57

7 17
0.3055777t20yz0 + 0.189663tz0y20 —

57 37

0.189663tz0y20,

The exact solution of problem (18)-(19) isy(y,t) =

t3 +yt? —y*t —y3.

Table 3 represent the absolute error of problem (18)-
(19) forys; andys. Following figure 5 and figure 6
which shows a comparison between the solution
resulted from the proposed method and the exact
solution of problem (18)-(19) and the absolute error

for k = 3,5, respectively.

Table 3. The absolute errors of the solutions for
problem (18)-(19).
Yy  vs@y)  vs(ry)
0 0 0
0.1 4.653e-11 3.592e-15
0.2 6.114e-11 9.243e-15
0.3 1.28e-10 1.798e-14
0.4 5.017e-10 4.4e-14
0.5 1.703e-9 1.227e-13
0.6 5.003e-9 3.433e-13
0.7 1.324e-8 9.301e-13
0.8 3.365e-8 2.466e-12
0.9 8.73e-8  0.403e-12
1 2.336e-7 1.661e-11

(2)

Y, (xt)

y.(vt)

Figure 3. The compression between the proposed
method and the exact solution of problem (16)-(17).
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Figure 5. The compression between the proposed
method and the exact solution of problem (18)-(19).
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(a)

(b)

(R =

Figure 4. The absolute error between the approximate
solution and the exact solution of problem (16)-(17).
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(@)

1o’

absolute Error for k=3

(b)

vl
U "5

il

(SR

absolute error for k=5

Figure 6. The absolute error between the approximate
solution and the exact solution of problem (18)-(19).

7. Conclusions

In this paper we proposed a modified semi-analytic
iterative method so that one may find the solution of
class of CFPIDEs. And as demonstrated in the examples,
it is very effective and efficient in solving problem (1)-
(2). The suggested method is simple to apply and to
simplify the calculations involved, the use of the shifted
Legendre polynomials came in handy even without the
use of a large number of polynomials.
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