Generalized Jordan Triple (σ, τ)-Higher Homomorphisms on Prime Rings

Neshtiman N. Sulaiman ${ }^{1, *}$ and Salah M. Salih ${ }^{2}$
${ }^{1}$ Department of Mathematics, College of Education, Salahaddin University, Erbil, Kurdistan Region, Iraq
${ }^{2}$ Department of Mathematics, College of Education, Al-Mustansirya University, Baghdad, Iraq

Articles Information	Abstract
Received:	Herstein proved that any Jordan homomorphism onto a prime ring of characteristic of
23.04 .2020	R different from 2 and 3 is either a homomorphism or an anti-homomorphism. In this paper
Accepted:	the concept of Generalized Jordan triple (σ, τ)-Higher Homomorphisms (GJT (σ, τ)-HH)
23.08 .2020	where σ and τ are two commuting homomorphisms are introduced as follows:
Published:	A family of additive mappings $F=\left(f_{i}\right)_{i \in \mathbb{N}}$ of R into R^{\prime} is said to be a Generalized
26.09 .2020	Triple (σ, τ)-Higher Homomorphism $(\mathrm{GT}(\sigma, \tau)$-HH) if there exist a triple (σ, τ)-higher
Keywords:	homomorphism (T $(\sigma, \tau)-\mathrm{HH}) \theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ such that for each $n \in \mathbb{N}$ and for all $a, b \in R$,
Generalized Jordan higher	we have:
homomorphism	$f_{n}(a b a)=\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(a)\right)$
Prime ring	and θ is said to be the relating triple (σ, τ)-HH.
Jordan homomorphism	We will primarily extend the result of Herstein on it. It should be proved that every
Homomorphisms	GJT (σ, τ)-HH of ring R into prime ring R^{\prime} is either GT (σ, τ)-HH or triple (σ, τ) higher anti-
Higher homomorphisms	homomorphism (T (σ, τ)-HAH).

DOI: 10.22401/ANJS.23.3.10
*Corresponding author: neshtiman.suliman@su.edu.krd

1. Introduction

Jordan homomorphisms of associative rings and algebras play a significant role in various mathematical areas, in particular of ring theory. Throughout this paper R will denote an associative ring with center $Z(R)$. A ring R is said to be a ring with an involution if there exists a mapping $*: R \rightarrow R$ such that for every $a, b \in R, a^{* *}=$ $a,(a+b)^{*}=b^{*}+a^{*}$ and $(a b)^{*}=b^{*} a^{*}$. R is called prime if $a R b=(0)$ implies $a=0$ or $b=0$ with $a, b \in R$, and it is called semiprime if $a R a=(0)$ with $a \in R$ implies $a=0$. A ring R is said to be 2 -torsion free, if $2 a=0$, with $a \in R$, implies $a=0$.

An additive mapping θ of a ring R into a 2 -torsion free ring $R^{`}$ is said to be a homomorphism (respectively antihomomorphism) if $\theta(a b)=\theta(a) \theta(b) \quad$ (respectively $\theta(a b)=\theta(b) \theta(a))$, therefore θ is said to be a Jordan homomorphism if $\theta(a b+b a)=\theta(a) \theta(b)+\theta(b)(a)$ and is called a JTH if $\theta(a b a)=\theta(a) \theta(b) \theta(a)$ for all $a, b \in R \quad$ (See $\quad[1,2,3,4])$. It is clear that every homomorphism (anti-homomorphism) is a Jordan homomorphism and every Jordan homomorphism is a JTH but the converse in general is not true (see example 2, in [4]).

In the recent paper [2] Herstein had proved, Jordan homomorphism onto a prime ring of characteristic of R different from 2 and 3 is either a homomorphism or an anti-homomorphism. In [4] Jacobson \& Rickart, proved that any Jordan homomorphism of an arbitrary ring into an integral domain is either a homomorphism or an anti-
homomorphism. In [1] Bresar studied a JTH of a ring R onto 2 torsion free semiprime ring $R^{`}$, he had proved that every JTH of a ring onto a prime ring of characteristic not 2 is either a homomorphism or an anti-homomorphism.

Generalized homomorphisms have been primarily defined by Majeed \& Shaheen [5] as follows: An additive mapping F of a ring R into ring R^{\prime} is said to be a generalized homomorphism (resp. GJH) if there exists a homomorphism (Jordan homomorphism) θ, such that:

$$
\begin{aligned}
F(a b) & =F(a) \theta(b)(F(a b+b a) \\
& =F(a) \theta(b)+F(b) \theta(a)), \text { for all } a, b \in R
\end{aligned}
$$

where θ is called the relating homomorphism (resp. Jordan homomorphism), they have proved that every GJH onto the prime ring of characteristic not 2 is either a homomorphism or an anti-homomorphism.

In [6] Faraj had introduced the concept generalized Higher Homomorphism (GHH) as follows; A family of additive mappings $F=\left(f_{i}\right)_{i \in \mathbb{N}}$ of R into R^{\prime} is called a GHH (respectively GJHH) if there exists aHH $\theta=$ $\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}, \quad$ such that $f_{n}(a b)=\sum_{i=1}^{n} f_{i}(a) \phi_{\mathrm{i}}(b)$ (respectively $\quad f_{n}(a b+b a)=\sum_{i=1}^{n} f_{i}(a) \phi_{\mathrm{i}}(b)+f_{i}(b)$ $\phi_{\mathrm{i}}(a)$, for all $n \in \mathbb{N}, a, b \in R$, where θ is said to be the relating HH (respectively JHH . If R^{\prime} is 2 -torsion-free, then the definition of GJHH is equivalent to the following; $f_{n}\left(a^{2}\right)=\sum_{i=1}^{n} f_{i}(a) \phi_{\mathrm{i}}(a)$, he had extended the result of Herstien and proved that every GJHH on to prime ring of characteristic not 2 is either a homomorphism or an antihomomorphism.

Al-Nahrain Journal of Science

ANJS, Vol. 23 (3), September, 2020, pp. 76 - 82

Following [7] Salih \& Jarallah, they have introduced the concept of GJ (σ, τ)-HH of R into R^{\prime} as follows: A family of additive mappings $F=\left(f_{i}\right)_{i \in N}$ of R into R^{\prime} and σ, τ are two homomorphisms of R such that $\sigma \tau=\tau \sigma$, is said to be a $\operatorname{GJ}(\sigma, \tau)$-HH if there exist a Jordan (σ, τ)-HH $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ from R into R^{\prime}, such that for each $n \in \mathbb{N}$ and for all $a, b \in R$,

$$
\begin{aligned}
f_{n}(a b+b a)= & \sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a) \phi_{i}\left(\tau^{i}(b)\right)+\right. \\
& \sum_{i=1}^{n} f_{i}\left(\sigma^{i}(b) \phi_{i}\left(\tau^{i}(a)\right)\right.
\end{aligned}
$$

where θ is said to be the relating Jordan $(\sigma, \tau)-\mathrm{HH}$.
In the research [8] the authors have presented the concept of GTHH (resp. GJTHH) as follows: A family of additive mappings $F=\left(f_{i}\right)_{i \in \mathbb{N}}$ of R into R^{\prime} is said to be a GTHH (respectively GJHH) if there exist a family of additive mappings $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ of R into R^{\prime}, such that $f_{n}(a b c)=\sum_{i=1}^{n} f_{i}(a) \phi_{i}(b) \phi_{i}(c)$ (respectively $f_{n}(a b a)=$ $\sum_{i=1}^{n} f_{i}(a) \phi_{i}(b) \phi_{i}(a)$, for each $n \in \mathbb{N}$ and for all $a, b \in$ R. They have given some results about them.

The purpose of this paper is to extend the above concepts to GT (σ, τ)-HH and GJT (σ, τ)-HAH. We will study the relation between these definitions and prove some results about it, depending on the results in [9].

2. Preliminaries

First, we will give some definitions and Lemmas.
Definition 2.1 [9]. A family of additive mappings $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ of R into R^{\prime} is said to be a triple (σ, τ)-HH if for each $n \in \mathbb{N}$ and for all $a, b \in R$, we have:

$$
\phi_{n}(a b c)=\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(c)\right)
$$

and θ is said to be a Jordan triple (σ, τ)-HH if for each $n \in \mathbb{N}$ and for all $a, b \in R$, we have:

$$
\phi_{n}(a b a)=\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(a)\right)
$$

Lemma 2.2 [9, Lemma 3.1]. If $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ is a JT (σ, τ) HH of R into R^{\prime}, then for each $n \in \mathbb{N}$ and for all $a, b, c, r \in$ R,

$$
\begin{aligned}
& A_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(a, b, c)\right)+ \\
& B_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) A_{n}\left(\tau^{n}(a, b, c)\right)=0
\end{aligned}
$$

Where:

$$
\begin{aligned}
A_{n}(a, b, c)= & \phi_{n}(a b c)-\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \\
& \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(c)\right) \\
B_{n}(a, b, c)= & \phi_{n}(a b c)-\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(c)\right) \\
& \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(a)\right)
\end{aligned}
$$

Note that if $A_{n}(a, b, c)=0$, then ϕ is a T (σ, τ)-HH and if $B_{n}(a, b, c)=0$, then ϕ is a T (σ, τ)-HAH.

Lemma 2.3 [9, Proposition 3.5]. Let $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ be a Jordan triple higher (σ, τ)-homomorphism from prime ring R into prime ring R^{\prime}, then θ is higher (σ, τ) homomorphism.

Lemma 2.4 [9, Theorem 3.4]. Every JT (σ, τ)-HH of ring R into prime ring R^{\prime} is either triple (σ, τ) - HH or triple (σ, τ)-HAH.
Lemma 2.5 [1]. Let R be a 2-torsion free semiprime ring. If $x, y \in R$ such that $x r y+y r x=0$, then $x r y=y r x=0$, for all $r \in R$.

Definition 2.6 [7]. A family of additive mappings $F=\left(f_{i}\right)_{i \in \mathbb{N}}$ of R into R^{\prime} is said to be a GJT (σ, τ)-HH if there exist a Jordan triple (σ, τ)-HH $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ such that for each $n \in \mathbb{N}$ and for all $a, b \in R$, we have:

$$
f_{n}(a b a)=\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(a)\right)
$$

and θ is called the relating Jordan triple $(\sigma, \tau)-\mathrm{HH}$.
Lemma 2.7. Let $F=\left(f_{i}\right)_{i \in \mathbb{N}}$ be a GJT (σ, τ)-HH of R into2-torsion free ring R^{\prime} associated with JT (σ, τ)-HH $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$. Then for each $n \in \mathbb{N}$ and for all $a, b, c \in R$,

$$
\begin{aligned}
f_{n}(a b c+c b a)= & \sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \\
& \phi_{i}\left(\tau^{i}(c)\right)+f_{i}\left(\sigma^{i}(c)\right) \\
& \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(a)\right)
\end{aligned}
$$

Proof. The same proof of Lemma 2.6 in [7].
Now, we will introduce the definition of GT (σ, τ)-HH as follows.

Definition 2.8. A family of additive mappings $F=$ $\left(f_{i}\right)_{i \in \mathbb{N}}$ of R into R^{\prime} is said to be a GT (σ, τ)-HH if there exist a triple $(\sigma, \tau)-\mathrm{HH} \theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$, such that for each $n \in \mathbb{N}$ and for all $a, b \in R$, we have:

$$
f_{n}(a b c)=\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(a)\right)
$$ and θ is said to be the relating triple $(\sigma, \tau)-\mathrm{HH}$.

It is clear that every Generalized Higher Homomorphism is a Generalized Jordan
Higher Homomorphism, but the converse need not be true in general. Following example shows

It is clear that every $\operatorname{GT}(\sigma, \tau)-\mathrm{HH}$ is a $\operatorname{GJT}(\sigma, \tau)-\mathrm{HH}$, but the converse is not true in general. In [8], the authors presented an example of a ring that is JHH but not HH, we will extend it to GT $(\sigma, \tau)-\mathrm{HH}$ as follows:

Example 2.9. Suppose that S is a ring with non-trivial involution $*, R=S \oplus S \oplus S, a \in S$ such that $a \in Z(S)$ and $s_{i} a s_{j}=0$, for all $s_{i}, s_{j} \in R, f$ or all i and j. Let $F=$ $\left(f_{i}\right)_{i \in \mathbb{N}}$ be a family of mappings of R into itself defined by for each $n \in N$ and $(s, t, s) \in R$:
$f_{n}((s, t, s))=\left\{\begin{array}{c}\left(-(2-n) a \sigma^{i}(s),(n-1) \sigma^{i} \tau^{n-i}\left(t^{*}\right),-(2-n) a \sigma^{i}(s)\right) \\ 0 \quad \text { for } n=1,2, \\ n \geq 3 .\end{array}\right.$
In [9], there is a JT $(\sigma, \tau)-\mathrm{HH} \theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ is defined by:

$$
\phi_{n}(s, t, s)=\left\{\begin{array}{c}
\left((2-n) a \sigma^{i}(s),(n-1) \sigma^{i} \tau^{n-i}\left(t^{*}\right),(2-n) a \sigma^{i}(s)\right), \\
0 \quad \text { for } n=1,2 \\
n \geq 3 .
\end{array}\right.
$$

Therefore, it is clear that F is a GJT (σ, τ)-HH but not a GT $(\sigma, \tau)-\mathrm{HH}$.

Al-Nahrain Journal of Science

ANJS, Vol. 23 (3), September, 2020, pp. 76 - 82

Remark 2.10. Let $F=\left(f_{i}\right)_{i \in \mathbb{N}}$ be a GT (σ, τ)-HH from R into R^{\prime} and $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ be a related $\mathrm{T}(\sigma, \tau)-\mathrm{HH}$. Then for each $n \in \mathbb{N}$ and for all $a, b \in R$, we will write

$$
\begin{aligned}
\delta_{n}(a, b, c)= & f_{n}(a b c)-\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a)\right) \\
& \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(c)\right) \\
\gamma_{n}(a, b, c)= & f_{n}(a b c)-\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(c)\right) \\
& \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(a)\right)
\end{aligned}
$$

For the purpose of this paper, we can list elementary properties about above

1. $\delta_{n}(a, b, c)+\delta_{n}(c, b, a)=0$.
2. $\gamma_{n}(a, b, c)+\gamma_{n}(c, b, a)=0$.

Note that if $\delta_{n}(a, b, c)=0$, then F is a GT (σ, τ)-HH and if $\gamma_{n}(a, b, c)=0$, then F is a GT (σ, τ) - HAH.

Lemma 2.11. If $F=\left(f_{i}\right)_{i \in \mathbb{N}}$ is a GT (σ, τ)-HH from a ring R into a ring R^{\prime} and $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ be a related JT $(\sigma, \tau)-\mathrm{HH}$, then for all $a, b \in R$ and $n \in \mathbb{N}$
i. $\quad \delta_{n}(a+b, c, d)=\delta_{n}(a, c, d)+\delta_{n}(b, c, d)$,
ii. $\delta_{n}(a, b+c, d)=\delta_{n}(a, b, d)+\delta_{n}(a, c, d)$,
iii. $\delta_{n}(a, b, c+d)=\delta_{n}(a, b, c)+\delta_{n}(a, b, d)$.

Proof. i.

$\delta_{n}(a+b, c, d)=f_{n}((a+b) c d)-\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a+\right.$
b)) $\phi_{i}\left(\sigma^{i} \tau^{n-i}(c)\right) \phi_{i}\left(\tau^{i}(d)\right)$
$=f_{n}(a c d+b c d)-$

$$
\begin{aligned}
& \sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(c)\right) \phi_{i}\left(\tau^{i}(d)\right)- \\
& \sum_{i=1}^{n} f_{i}\left(\sigma^{i}(b)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(c)\right) \phi_{i}\left(\tau^{i}(d)\right)
\end{aligned}
$$

Since f_{n} is an additive mapping for each n, then:

$$
\delta_{n}(a+b, c, d)=f_{n}(a c d)-
$$

$$
\begin{aligned}
& \sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(c)\right) \phi_{i}\left(\tau^{i}(d)\right)+ \\
& f_{n}(b c d)- \\
& \sum_{i=1}^{n} f_{i}\left(\sigma^{i}(b)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(c)\right) \phi_{i}\left(\tau^{i}(d)\right) \\
& = \\
& \delta_{n}(a, c, d)+\delta_{n}(b, c, d)
\end{aligned}
$$

By the same way we can prove ii and iii.

3. Main Results

Lemma 3.1. If $F=\left(f_{i}\right)_{i \in \mathbb{N}}$ is a GJT (σ, τ)-HH of R into R^{\prime} and $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ be a related JT (σ, τ)-HH, then for each $n \in \mathbb{N}$ and for all $a, b, c, r \in R$,

$$
\delta_{n}\left(\sigma^{n}(a b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(a b, c)\right)+\gamma_{n}\left(\sigma^{n}(a b c)\right) \phi_{n}\left(\sigma^{n}(r)\right) A_{n}\left(\tau^{n}(a, b, c)\right)=0
$$

Proof. Assume that F is a GJT (σ, τ)-HH and take $a, b, c, r \in R$.
By induction on $n \in \mathbb{N}$. If $n=1$; define $w=a b c r c b a+c b a r a b c$, then we get the require result.
We can assume that

$$
\delta_{m}\left(\sigma^{m}(a, b, c)\right) \phi_{m}\left(\sigma^{m}(r)\right) B_{m}\left(\tau^{m}(a, b, c)\right)+\gamma_{m}\left(\sigma^{m}(a, b, c)\right) \phi_{m}\left(\sigma^{m}(r)\right) A_{m}\left(\tau^{m}(a, b, c)\right)=0
$$

is true for all $a, b, c, r \in R, n \in \mathbb{N}$ and $m<n$.
Now, we have:

$$
\begin{align*}
f_{n}(w)= & f_{n}(a(b c r c b) a+c(\text { barab }) c) \\
= & \sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b c r c b)\right) \phi_{i}\left(\tau^{i}(a)\right)+\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b a r a b)\right) \phi_{i}\left(\tau^{i}(c)\right) \\
= & \sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a)\right)\left(\sum_{j=1}^{i} \phi_{j}\left(\sigma^{j} \sigma^{i} \tau^{n-i}(b)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j} \sigma^{i} \tau^{n-i}(c r c)\right) \phi_{j}\left(\tau^{j} \sigma^{i} \tau^{n-i}(b)\right)\right) \phi_{i}\left(\tau^{i}(a)\right)+ \\
& \sum_{i=1}^{n} f_{i}\left(\sigma^{i} c\right)\left(\sum_{j=1}^{i} \phi_{j}\left(\sigma^{j} \sigma^{i} \tau^{n-i}(b)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j} \sigma^{i} \tau^{n-i}(a r a)\right) \phi_{j}\left(\tau^{j} \sigma^{i} \tau^{n-i}(b)\right)\right) \phi_{i}\left(\tau^{i}(c)\right) \\
= & \sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a)\right)\left(\sum _ { j = 1 } ^ { i } \phi _ { j } (\sigma ^ { j } \sigma ^ { i } \tau ^ { n - i } (b)) \left(\sum_{k=1}^{j} \phi_{k}\left(\sigma^{k} \sigma^{j} \tau^{n-j} \sigma^{i} \tau^{n-i}(c)\right) \phi_{k}\left(\sigma^{k} \tau^{j-k} \sigma^{j} \tau^{n-j} \sigma^{i} \tau^{n-i}(r)\right)\right.\right. \\
& \left.\left.\phi_{k}\left(\tau^{k} \sigma^{j} \tau^{n-j} \sigma^{i} \tau^{n-i}(c)\right)\right) \phi_{j}\left(\tau^{j} \sigma^{i} \tau^{n-i}(b)\right)\right) \phi_{i}\left(\tau^{i}(a)\right)+\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(c)\right)\left(\sum_{j=1}^{i} \phi_{j}\left(\sigma^{j} \sigma^{i} \tau^{n-i}(b)\right)\right. \\
& \left(\sum_{k=1}^{j} \phi_{k}\left(\sigma^{k} \sigma^{j} \tau^{n-j} \sigma^{i} \tau^{n-i}(a)\right) \phi_{k}\left(\sigma^{k} \tau^{j-k} \sigma^{j} \tau^{n-j} \sigma^{i} \tau^{n-i}(r)\right) \phi_{k}\left(\tau^{k} \sigma^{j} \tau^{n-j} \sigma^{i} \tau^{n-i}(a)\right)\right) \\
& \left.\phi_{j}\left(\tau^{j} \sigma^{i} \tau^{n-i}(b)\right)\right) \phi_{i}\left(\tau^{i}(c)\right) \\
= & \left.\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\sigma^{i} \sigma^{i} \tau^{n-i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i} \sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(c)\right)\right) \phi_{i}\left(\sigma^{i} \tau^{n}(b)\right) \phi_{i}\left(\tau^{i}(a)\right)+ \\
& \left.\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\sigma^{i} \sigma^{i} \tau^{n-i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i} \sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i} a\right)\right) \phi_{i}\left(\sigma^{i} \tau^{n}(b)\right) \phi_{i}\left(\tau^{i}(c)\right) \\
& \left.\left.\left.\left.\left.\phi_{j=1}^{n}\left(\sum_{j=1}^{i} f_{i}\left(\tau^{j}(a)\right)\right)\right)+\sigma^{i}(a)\right) \phi_{j}\left(\sigma^{j} \sigma^{i} \tau^{n-i}(b)\right) \phi_{j}\left(\tau^{n}(c)\right)\right) \phi_{i}\left(\sigma^{j} \sigma^{i} \tau^{n-i}(r)\right)\left(\sum_{j=1}^{i} f_{j=1}^{i} f_{i}\left(\sigma_{j}\left(\tau^{j}(c)\right) \sigma_{j}^{j} \tau^{n-j}(c)\right)\right) \phi_{j}\left(\tau^{j} \sigma^{i} \tau^{n-i}(b)\right)\right) \phi_{j}\left(\tau^{n}(a)\right)\right) \phi_{i}\left(\sigma^{j} \sigma^{i} \tau^{n-i}(r)\right) \\
& \left.\sum_{j=1}^{i}\left(\phi_{j}\left(\tau^{j} \sigma^{j} \tau^{n-j}(a)\right)\right) \phi_{j}\left(\tau^{j}(b)\right) \phi_{j}\left(\tau^{j}(c)\right)\right)
\end{align*}
$$

On the other hand, $f_{n}(w)=f_{n}((a b c) r(c b a)+(c b a) r(a b c))$. Thus by Lemma 2.7, we get:

$$
\left.f_{n}(w)=\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(c b a)\right)+f_{i}\left(\sigma^{i}(c b a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right)\right) \phi_{i}\left(\tau^{i}(a b c)\right)
$$

Al-Nahrain Journal of Science

ANJS, Vol. 23 (3), September, 2020, pp. 76 - 82

$$
\begin{align*}
&= \sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right)\left(\sum_{i=1}^{n}\left(\phi_{j}\left(\sigma^{j} \tau^{i}(a)\right)\right) \phi_{j}\left(\sigma^{j} \tau^{j-i} \tau^{i}(b)\right) \phi_{j}\left(\tau^{j} \tau^{i}(c)\right)+\phi_{j}\left(\sigma^{j} \tau^{i}(c)\right)\right. \\
&\left.\phi_{j}\left(\sigma^{j} \tau^{j-i} \tau^{i}(b)\right) \phi_{j}\left(\tau^{j} \tau^{i}(a)\right)-\phi_{i}\left(\tau^{i}(a b c)\right)\right)+\sum_{i=1}^{n}\left(\sum _ { j = 1 } ^ { i } \left(f_{j}\left(\sigma^{j} \sigma^{i}(a)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j} \sigma^{i}(b)\right) \phi_{j}\left(\tau^{j} \sigma^{i}(c)\right)+\right.\right. \\
&\left.\left.\left.f_{j}\left(\sigma^{j} \sigma^{i}(c)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j} \sigma^{i}(b)\right) \phi_{j}\left(\tau^{j} \sigma^{i}(a)\right)-f_{i}\left(\sigma^{i}(a b c)\right)\right)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right)\right) \phi_{i}\left(\tau^{i}(a b c)\right) \\
&= \sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \sum_{j=1}^{i} \phi_{j}\left(\sigma^{j} \tau^{i}(a)\right) \phi_{j}\left(\sigma^{j} \tau^{j}(b)\right) \phi_{j}\left(\tau^{j} \tau^{i}(c)\right)+\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a b c)\right) \\
& \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \sum_{j=1}^{i} \phi_{j}\left(\sigma^{j} \tau^{j}(c)\right) \phi_{j}\left(\sigma^{j} \tau^{j}(b)\right) \phi_{j}\left(\tau^{j} \tau^{i}(a)\right)-\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a b c)\right)+ \\
& \sum_{i=1}^{n} \sum_{j=1}^{i} f_{j}\left(\sigma^{j} \sigma^{i}(a)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j} \sigma^{i}(b)\right) \phi_{j}\left(\tau^{j} \sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a b c)\right)+\sum_{i=1}^{n} \sum_{j=1}^{i} f_{j}\left(\sigma^{j} \sigma^{i}(c)\right) \\
&\left.\phi_{j}\left(\sigma^{j} \tau^{i-j} \sigma^{i}(b)\right) \phi_{j}\left(\tau^{j} \sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a b c)\right)-\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right)\right) \phi_{i}\left(\tau^{i}(a b c)\right) \\
&=-\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right)\left(\phi_{i}\left(\tau^{i}(a b c)\right)-\sum_{j=1}^{i} \phi_{j}\left(\sigma^{j} \tau^{i}(a)\right) \phi_{j}\left(\sigma^{j} \tau^{j}(b)\right) \phi_{j}\left(\tau^{j} \tau^{i}(c)\right)\right)- \\
& \sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right)\left(\phi_{i}\left(\tau^{i}(a b c)\right)-\sum_{j=1}^{i} \phi_{j}\left(\sigma^{j} \tau^{i}(c)\right) \phi_{j}\left(\sigma^{j} \tau^{j}(b)\right) \phi_{j}\left(\tau^{j} \tau^{i}(a)\right)\right)-+ \\
& \sum_{i=1}^{n} \sum_{j=1}^{i} f_{j}\left(\sigma^{j} \sigma^{i}(a)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j} \sigma^{i}(b)\right) \phi_{j}\left(\tau^{j} \sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a b c)\right)+ \\
& \sum_{i=1}^{n} \sum_{j=1}^{i} f_{j}\left(\sigma^{j} \sigma^{i}(c)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j} \sigma^{i}(b)\right) \phi_{j}\left(\tau^{j} \sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a b c)\right) \\
&=-\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) A_{i}\left(\tau^{i}(a, b, c)\right)-\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) B_{i}\left(\tau^{i}(a b c)\right)+ \\
& \sum_{i=1}^{n} \sum_{j=1}^{i} f_{j}\left(\sigma^{j} \sigma^{i}(a)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j} \sigma^{i}(b)\right) \phi_{j}\left(\tau^{j} \sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a b c)\right)+ \\
& \sum_{i=1}^{n} \sum_{j=1}^{i} f_{j}\left(\sigma^{j} \sigma^{i}(c)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j} \sigma^{i}(b)\right) \phi_{j}\left(\tau^{j} \sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) \phi_{i}\left(\tau^{i}(a b c)\right) \tag{2}
\end{align*}
$$

From equations (1) and (2), we get:

$$
\begin{aligned}
0= & -\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) A_{i}\left(\tau^{i}(a, b, c)\right)-\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) B_{i}\left(\tau^{i}(a b c)\right)+ \\
& \sum_{i=1}^{n}\left(\sum_{j=1}^{i} f_{j}\left(\sigma^{j} \sigma^{i}(a)\right) \phi_{j}\left(\sigma^{j} \tau^{-j} \sigma^{i}(b)\right) \phi_{j}\left(\tau^{j} \sigma^{i}(c)\right)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right)\left(\phi_{i}\left(\tau^{i}(a b c)\right)-\sum_{j=1}^{i} \phi_{j}\left(\tau^{j} \sigma^{j} \tau^{n-j}(c)\right)\right) \\
& \left.\phi_{j}\left(\tau^{j}(b)\right) \phi_{j}\left(\tau^{j}(a)\right)\right)+\sum_{i=1}^{n}\left(\sum_{j=1}^{i} f_{j}\left(\sigma^{j} \sigma^{i}(c)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j} \sigma^{i}(b)\right) \phi_{j}\left(\tau^{i} \sigma^{i}(a)\right)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right)\left(\phi_{i}\left(\tau^{i}(a b c)\right)-\right. \\
& \left.\left.\sum_{j=1}^{i} \phi_{j}\left(\tau^{j} \sigma^{j} \tau^{n-j}(a)\right)\right) \phi_{j}\left(\tau^{j}(b)\right) \phi_{j}\left(\tau^{j}(c)\right)\right) \\
0= & -\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) A_{i}\left(\tau^{i}(a, b, c)\right)-\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a b c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) B_{i}\left(\tau^{i}(a b c)\right)+ \\
& \sum_{i=1}^{n}\left(\sum_{j=1}^{i} f_{j}\left(\sigma^{j} \sigma^{i}(a)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j} \sigma^{i}(b)\right) \phi_{j}\left(\tau^{j} \sigma^{i}(c)\right)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) B_{i}\left(\tau^{i}(a, b, c)\right)+ \\
& \sum_{i=1}^{n}\left(\sum_{j=1}^{i} f_{j}\left(\sigma^{j} \sigma^{i}(c)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j} \sigma^{i}(b)\right) \phi_{j}\left(\tau^{j} \sigma^{i}(a)\right)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) A_{i}\left(\tau^{i}(a, b, c)\right) \\
0= & -\sum_{i=1}^{n}\left(f_{i}\left(\sigma^{i}(a b c)\right)-\sum_{j=1}^{i} f_{j}\left(\sigma^{j} \sigma^{i}(a)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j} \sigma^{i}(b)\right) \phi_{j}\left(\tau^{j} \sigma^{i}(c)\right)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) B_{i}\left(\tau^{i}(a, b, c)\right)- \\
& \sum_{i=1}^{n}\left(f_{i}\left(\sigma^{i}(a b c)\right)-\sum_{j=1}^{i} f_{j}\left(\sigma^{j} \sigma^{i}(c)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j} \sigma^{i}(b)\right) \phi_{j}\left(\tau^{i} \sigma^{i}(a)\right)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) A_{i}\left(\tau^{i}(a, b, c)\right) \\
0= & -\sum_{i=1}^{n} \delta_{i}\left(\sigma^{i}(a, b, c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) B_{i}\left(\tau^{i}(a, b, c)\right)-\sum_{i=1}^{n} \gamma_{i}\left(\sigma^{i}(a, b, c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(r)\right) A_{i}\left(\tau^{i}(a, b, c)\right)
\end{aligned}
$$

Hence, we have: $\gamma_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) A_{n}\left(\tau^{n}(a b, c)\right)+\delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(a, b, c)\right)=0$.

Corollary 3.2. Let $F=\left(f_{i}\right)_{i \in \mathbb{N}}$ be a GJT (σ, τ)-HH of R into R' and $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ be a related JT $(\sigma, \tau)-\mathrm{HH}$, then for each $n \in \mathbb{N}$ and for all $a, b, c, r \in R$

$$
\begin{aligned}
& \delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(a, b, c)\right)= \\
& \gamma_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) A_{n}\left(\tau^{n}(a, b, c)\right)=0
\end{aligned}
$$

Proof. By Lemma 2.5 and Lemma 3.1, we get the result.
Theorem 3.3. Let $F=\left(f_{i}\right)_{i \in \mathbb{N}}$ be a GJT (σ, τ)-HH of ring R into prime ring R^{\prime} and $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ be a related JT
(σ, τ)-HH then for each $n \in \mathbb{N}$ and for all $a, b, c, r, x, y, z \in R$
$\delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, z)\right)=0$
Proof. Replace $a+x$ by a in Corollary 3.2, we get:
$\delta_{n}\left(\sigma^{n}(a+x, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(a+x, b, c)\right)=0$
Hence:
$\delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(a, b, c)\right)+$
$\delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, b, c)\right)+$

Al-Nahrain Journal of Science

ANJS, Vol. 23 (3), September, 2020, pp. 76 - 82
$\delta_{n}\left(\sigma^{n}(x, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(a, b, c)\right)+$ $\delta_{n}\left(\sigma^{n}(x, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, b, c)\right)=0$
By Corollary 3.2, we obtain:

$$
\begin{aligned}
& \delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, b, c)\right) \\
& +\delta_{n}\left(\sigma^{n}(x, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(a, b, c)\right)=0
\end{aligned}
$$

Therefore, we get:

$$
\begin{aligned}
& 0=\delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, b, c)\right) \\
& \phi_{n}\left(\sigma^{n}(r)\right) \delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, b, c)\right)= \\
& -\delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) \\
& \delta_{n}\left(\sigma^{n}(x, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(a, b, c)\right)
\end{aligned}
$$

Since R^{\prime} is prime, we obtain:

$$
\begin{equation*}
\delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, b, c)\right)=0 \tag{3}
\end{equation*}
$$

Replacing $\mathrm{b}+y$ for b in equation (3), we get:

$$
\delta_{n}\left(\sigma^{n}(a, b+y, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, b+y, c)\right)=0
$$

Hence:

$$
\delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, b, c)\right)+
$$

$$
\delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c)\right)+
$$

$$
\delta_{n}\left(\sigma^{n}(a, y, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, b, c)\right)+
$$

$$
\delta_{n}\left(\sigma^{n}(a, y, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c)\right)=0
$$

We can use equation (3), we get:
$\delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c)\right)+$ $\delta_{n}\left(\sigma^{n}(a, y, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, b, c)\right)=0$
Therefore, we get:

$$
\begin{aligned}
& 0=\delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c)\right) \\
& \phi_{n}\left(\sigma^{n}(r)\right) \delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c)\right)= \\
& -\delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) \\
& \delta_{n}\left(\sigma^{n}(a, y, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, b, c)\right)
\end{aligned}
$$

Since R^{\prime} is prime, we obtain:

$$
\begin{equation*}
\delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c)\right)=0 \tag{4}
\end{equation*}
$$

Replacing $\mathrm{c}+z$ for c in equation (4), we get:
$\delta_{n}\left(\sigma^{n}(a, b, c+z)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c+z)\right)=0$
Hence:

$$
\begin{aligned}
& \delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c)\right)+ \\
& \delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, z)\right)+ \\
& \delta_{n}\left(\sigma^{n}(a, b, z)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c)\right)+ \\
& \delta_{n}\left(\sigma^{n}(a, b, z)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, z)\right)=0
\end{aligned}
$$

We can use equation (4), we get:

$$
\begin{aligned}
& \delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, z)\right)+ \\
& \delta_{n}\left(\sigma^{n}(a, b, z)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, c)\right)=0
\end{aligned}
$$

Therefore, we get:

$$
\begin{aligned}
0= & \delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, z)\right) \\
& \phi_{n}\left(\sigma^{n}(r)\right) \delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) \\
& B_{n}\left(\tau^{n}(x, y, z)\right) \\
= & -\delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, z)\right) \\
& \phi_{n}\left(\sigma^{n}(r)\right) \delta_{n}\left(\sigma^{n}(a, b, z)\right) \phi_{n}\left(\sigma^{n}(r)\right) \\
& B_{n}\left(\tau^{n}(x, y, c)\right)
\end{aligned}
$$

Since R^{\prime} is prime, we obtain:

$$
\delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, z)\right)=0
$$

Now, we will prove the principal theorem of this section which is an extension of result in [8].

Theorem 3.4. Let $F=\left(f_{i}\right)_{i \in \mathbb{N}}$ be a GJT (σ, τ)-HH of a ring R into prime ring R^{\prime} and $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ be a related JT (σ, τ) - HH , then F is $\mathrm{GT}(\sigma, \tau)$ - HH or triple (σ, τ)-HAH.
Proof. Since F is a GJT (σ, τ)-HH. Then by Theorem 3.3, we have:

$$
\delta_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(x, y, z)\right)=0
$$

Since R^{\prime} is prime, therefore either $\delta_{n}\left(\sigma^{n}(a, b, c)\right)=0$ or $B_{n}\left(\tau^{n}(x, y, z)\right)=0$, for each $n \in \mathbb{N}$ and for all $a, b, c, x, y, z \in R$.
If $B_{n}\left(\tau^{n}(x, y, z)\right)=0$, then by Lemma 2.2, we obtain F is triple (σ, τ) - higher anti-homomorphism.
But if $\delta_{n}\left(\sigma^{n}(a, b, c)\right)=0$, then by Remark 2.10, we obtain F is GT (σ, τ)-HH.

Theorem 3.5. Let $F=\left(f_{i}\right)_{i \in \mathbb{N}}$ be a GJT (σ, τ)-HH of R into a 2-torsion-free prime ring R^{\prime} and $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ be a related JT $(\sigma, \tau)-\mathrm{HH}$. Then $F \mathrm{G}(\sigma, \tau)-\mathrm{HH}$ or $\mathrm{G}(\sigma, \tau)$ HAH.
Proof. Since $F=\left(f_{i}\right)_{i \in \mathbb{N}}$ is a GJT (σ, τ)-HH of R into R^{\prime} there exist $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathbb{N}}$ be a related JT (σ, τ)-HH. Then by Lemma 2.4, we have ϕ is a Triple (σ, τ)-HH or Triple (σ, τ)-HAH. Therefore we obtain two cases
Case I: If $\theta=\phi$, where Φ is triple (σ, τ)-HH. Then for all $a, b, c \in R$, we have:

$$
\phi_{n}(a b c)=\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(c)\right)
$$

Since:

$$
\begin{aligned}
A_{n}(a, b, c)= & \phi_{n}(a b c)-\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(a)\right) \\
& \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(c)\right)
\end{aligned}
$$

this means $A_{n}(a, b, c)=0$. By Lemma 3.1, we get:

$$
\delta_{n}\left(\sigma^{n}(a b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) B_{n}\left(\tau^{n}(a b, c)\right)=0
$$

Since R is prime ring, then either $\delta_{n}\left(\sigma^{n}(a b, c)\right)=0$ or $B_{n}\left(\tau^{n}(a b, c)\right)=0$.
If $B_{n}\left(\tau^{n}(a b, c)\right)=0$, then we get ϕ is triple $(\sigma, \tau)-\mathrm{HAH}$, and this will be a contradiction with assumption. Therefore $\delta_{n}\left(\sigma^{n}(a b, c)\right)=0$, for all $a, b, c \in R$, that is:

$$
f_{n}(a b c)=\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(c)\right)
$$

We proceed by induction on $n \in \mathbb{N}$. f $\mathrm{n}=1$, let $W=$ $f_{1}(a b x a b)$. Since ϕ JT $(\sigma, \tau)-\mathrm{HH}$. Then by Lemma 1.3, we have ϕ is a (σ, τ)-HH. Hence:

$$
\begin{align*}
W & =f_{1}(a b x a b) \\
& =f_{1}(\sigma(a b)) \phi_{1}(\sigma(x)) \phi_{1}(\tau(a b)) \\
& =f_{1}(\sigma(a b)) \phi_{1}(\sigma(x)) \phi_{1}(\tau(a)) \phi_{1}(\tau(b)) \tag{5}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
W & =f_{1}(a(b x a) b) \\
& =f_{1}(\sigma(a)) \phi_{1}(\sigma(b x a)) \phi_{1}(\tau(b)) \\
& =f_{1}(\sigma(a)) \phi_{1}(\sigma(b x)) \phi_{1}(\tau(a)) \phi_{1}(\tau(b)) \\
& =f_{1}(\sigma(a)) \phi_{1}(\sigma(b)) \phi_{1}(\sigma(x)) \phi_{1}(\tau(a)) \phi_{1}(\tau(b)) \tag{6}
\end{align*}
$$

Comparing (5) and (6), we get the result.

Al-Nahrain Journal of Science

ANJS, Vol. 23 (3), September, 2020, pp. 76 - 82

We can assume that f_{m} is true for all $a, b, c, r \in R, n \in$ \mathbb{N} and $m<n$. Let:

$$
\begin{align*}
W= & f_{n}(a b x a b) \\
= & \sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a b)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(x)\right) \phi_{i}\left(\tau^{i}(a b)\right) \\
= & \sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a b)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(x)\right) \\
& \sum_{j=1}^{i} \phi_{j}\left(\sigma^{j}(a)\right) \cdot \phi_{j}\left(\tau^{j}(b)\right) \\
= & f_{n}\left(\sigma^{n}(a b)\right) \phi_{n}\left(\sigma^{n}(x)\right) \sum_{j=1}^{i} \phi_{j}\left(\sigma^{j}(a)\right) \cdot+ \\
& \phi_{j}\left(\tau^{j}(b)\right) \sum_{i=1}^{n-1} f_{i}\left(\sigma^{i}(a b)\right) \\
& \phi_{i}\left(\sigma^{i} \tau^{n-i}(x)\right) \sum_{j=1}^{i} \phi_{j}\left(\sigma^{j}(a)\right) \phi_{j}\left(\tau^{j}(b)\right) \tag{7}
\end{align*}
$$

On the other hand:

$$
\begin{align*}
W= & f_{n}(a(b x a) b) \\
= & \sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b x a)\right) \phi_{i}\left(\tau^{i}(b)\right) \\
= & \sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a)\right)\left(\sum_{j=1}^{i} \phi_{j}\left(\sigma^{j}(b)\right)\right. \\
& \left.\phi_{j}\left(\sigma^{j} \tau^{i-j}(x a)\right)\right) \phi_{i}\left(\tau^{i}(b)\right) \\
= & \sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \\
& \phi_{i}\left(\sigma^{j} \tau^{i-j}(x a)\right) \phi_{i}\left(\tau^{i}(b)\right) \\
= & \sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \\
& \left(\sum_{j=1}^{i} \phi_{j}\left(\sigma^{j}(x)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j}(a)\right)\right) \phi_{i}\left(\tau^{i}(b)\right) \\
= & \sum_{i=1}^{n} \sum_{j=1}^{i} f_{j}\left(\sigma^{j}(a)\right) \phi_{i}\left(\sigma^{i}(b)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(x)\right) \\
& \left(\sum_{j=1}^{i} \phi_{j}\left(\sigma^{j}(a)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j}(b)\right)\right) \\
= & \sum_{j=1}^{n} f_{j}\left(\sigma^{j}(a)\right) \phi_{j}\left(\sigma^{j}(b)\right) \phi_{j}\left(\sigma^{j} \tau^{n-j}(x)\right) \\
& \left(\sum_{j=1}^{i} \phi_{j}\left(\sigma^{j}(a)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j}(b)\right)\right) \\
& \sum_{i=1}^{n-1} \sum_{j=1}^{i} f_{j}\left(\sigma^{j}(a)\right) \phi_{i}\left(\sigma^{i}(b)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(x)\right) \\
& \left(\sum_{j=1}^{i} \phi_{j}\left(\sigma^{j}(a)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j}(b)\right)\right) \tag{8}
\end{align*}
$$

By comparing (7) and (8), we get:

$$
\begin{aligned}
0= & \sum_{i=1}^{n-1}\left(f_{i}\left(\sigma^{i}(a b)\right)-\sum_{j=1}^{i} f_{j}\left(\sigma^{j}(a)\right) \phi_{j}\left(\sigma^{j}(b)\right)\right) \\
& \phi_{j}\left(\sigma^{j} \tau^{n-j}(x)\right)\left(\sum_{j=1}^{i} \phi_{j}\left(\sigma^{j}(a)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j}(b)\right)\right)+ \\
& \left(f_{n}\left(\sigma^{n}(a b)\right)-\sum_{j=1}^{n} f_{j}\left(\sigma^{j}(a)\right) \phi_{j}\left(\sigma^{j}(b)\right)\right) \\
& \phi_{j}\left(\sigma^{j} \tau^{n-j}(x)\right)\left(\sum_{j=1}^{i} \phi_{j}\left(\sigma^{j}(a)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j}(b)\right)\right)
\end{aligned}
$$

By the assumption of $m<n$, reduces the last equation to:

$$
\begin{aligned}
& \left(f_{n}\left(\sigma^{n}(a b)\right)-\sum_{j=1}^{n} f_{j}\left(\sigma^{j}(a)\right) \phi_{j}\left(\sigma^{j}(b)\right)\right) \\
& \phi_{j}\left(\sigma^{j} \tau^{n-j}(x)\right)\left(\sum_{j=1}^{i} \phi_{j}\left(\sigma^{j}(a)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j}(b)\right)\right)=0
\end{aligned}
$$

This implies that, for all $a, b, x \in R, n \in \mathbb{N}$.

$$
\left(f_{n}\left(\sigma^{n}(a b)\right)-\sum_{j=1}^{i} f_{j}\left(\sigma^{j}(a)\right) \phi_{j}\left(\sigma^{j}(b)\right)\right) R^{\prime}=0
$$

Since R^{\prime} is prime, then we get:

$$
f_{n}\left(\sigma^{n}(a b)\right)=\sum_{j=1}^{i} f_{j}\left(\sigma^{j}(a)\right) \phi_{j}\left(\sigma^{j}(b)\right)
$$

this means F is $\mathrm{G}(\sigma, \tau)-\mathrm{HH}$.
Case II: If Φ is triple $(\sigma, \tau)-\mathrm{HAH}$, hence:

$$
\begin{aligned}
\phi_{n}(a b c)= & \sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \\
& \phi_{i}\left(\tau^{i}(a)\right)
\end{aligned}
$$

By the same way of proof case I, we get:

$$
\delta_{n}\left(\sigma^{n}(a b, c)\right)=0 \text { or } B_{n}\left(\tau^{n}(a b, c)\right)=0
$$

If $B_{n}\left(\tau^{n}(a b, c)\right)=0$, then we get ϕ is triple $(\sigma, \tau)-\mathrm{HAH}$, and this will be a contradiction with assumption. Therefore $\delta_{n}\left(\sigma^{n}(a b, c)\right)=0$, for all $a, b, c \in R$, that is:

$$
f_{n}(a b c)=\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(a)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(c)\right)
$$

Since:

$$
\begin{aligned}
B_{n}(a, b, c)= & \phi_{n}(a b c)-\sum_{i=1}^{n} \phi_{i}\left(\sigma^{i}(c)\right) \\
& \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(a)\right)
\end{aligned}
$$

this means $B_{n}(a, b, c)=0$. By Lemma 2.1, we get:

$$
\gamma_{n}\left(\sigma^{n}(a, b, c)\right) \phi_{n}\left(\sigma^{n}(r)\right) A_{n}\left(\tau^{n}(a b, c)\right)=0
$$

Since R is prime ring, then either $\gamma_{n}\left(\sigma^{n}(a, b, c)\right)=$ 0 or $A_{n}\left(\tau^{n}(a b, c)\right)=0$. If $A_{n}\left(\tau^{n}(a b, c)\right)=0$, then we get ϕ is triple $(\sigma, \tau)-\mathrm{HH}$, and this will be a contradiction with assumption. Therefore $\quad \gamma_{n}\left(\sigma^{n}(a b, c)\right)=$ 0 , for all $a, b, c \in R$, that is:

$$
f_{n}(a b c)=\sum_{i=1}^{n} f_{i}\left(\sigma^{i}(c)\right) \phi_{i}\left(\sigma^{i} \tau^{n-i}(b)\right) \phi_{i}\left(\tau^{i}(a)\right)
$$

As in the proof case I, we get:

$$
\begin{aligned}
& \left(f_{n}\left(\sigma^{n}(a b)\right)-\sum_{j=1}^{n} f_{j}\left(\sigma^{j}(b)\right) \phi_{j}\left(\sigma^{j}(a)\right)\right) \\
& \phi_{j}\left(\sigma^{j} \tau^{n-j}(x)\right)\left(\sum_{j=1}^{i} \phi_{j}\left(\sigma^{j}(b)\right) \phi_{j}\left(\sigma^{j} \tau^{i-j}(a)\right)\right)= \\
& 0
\end{aligned}
$$

This implies that, for all $a, b, x \in R, n \in \mathbb{N}$.

$$
\left(f_{n}\left(\sigma^{n}(a b)\right)-\sum_{j=1}^{i} f_{j}\left(\sigma^{j}(b)\right) \phi_{j}\left(\sigma^{j}(a)\right)\right) R^{\prime}=0
$$

Since R^{\prime} is prime, then we get:
$f_{n}\left(\sigma^{n}(a b)\right)=\sum_{j=1}^{i} f_{j}\left(\sigma^{j}(b)\right) \phi_{j}\left(\sigma^{j}(a)\right)$, this means F is $\mathrm{G}(\sigma, \tau)$-HAH.

References

[1] Bresar M.; "Jordan mappings of semiprime rings"; Journal of Algebra, 27, 218-228, 1989.
[2] Herstein NI.; "Jordan homomrphisms"; Trans. Amer. Math. Soc., 81, 331-351, 1959.
[3] Herstein NI.; "Topics in Ring Theory"; Chicago, Univ.Of Chicago Press., 1965.
[4] Jacobson N.; Rickart C.; "Jordan homomorphisms of rings"; Trans. Amer. Math. Soc., 69, 479-502, 1950.
[5] Majeed A.; Shaheen R.; "GJhomomrphism and generalized JTH onto prime rings", Iraqi Journal of science, 50:221-225, 2009.
[6] Faraj AK.; "On Higher derivations andHHs of prime rings", Ph.D, thesis, Iraq, Baghdad, University of Technology, Iraq, 2006.
[7] Salih MS.; Jarallah FR.; "GJ (σ, τ)-HHs of a ring R into ring R'", Math. Theory and Modeling, 5, 57-68, 2015.
[8] Faraj AK.; Majeed AH.; Haetinger C.; Nadeem U.; "On GJhigher homomrphisms", Palestine Journal of Mathematics, 3(1), 406-421, 2014.

Al-Nahrain Journal of Science

ANJS, Vol. 23 (3), September, 2020, pp. 76-82
[9] Salih MS.; Sulaiman NN.; "Jordan triple higher (σ, τ)homomorphisms on prime rings", Iaqi journal of Science, Accepted for publition in 10(61), 2020.

