
Al-Nahrain Journal of Science                                                                          Vol. 22 (4), December, 2019, pp. 68-74 

68 

Solution of Scalar Riccati Differential Equation of Fractional Order 
 

Fadhel Subhi Fadhel* and Sabreen Hashim Jasim 

Department of Mathematics and Computer Applications, College of Science,  

Al-Nahrain University, Baghdad-Iraq. 

* Corresponding Author: fsf@sc.nahrainuniv.edu.iq. 
 

Abstract 

The main objective of this paper is to generalize the scalar Riccati differential equation for 

factional order derivatives using Caputo definition, and then to find its approximate solution using 

the variational iteration method. The present work consists of the statement and the proof of the 

variational iteration formula and then prove of its convergent to the exact solution. Some illustrative 

examples are considered and simulated using Mathcad 15 computer program.  
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Introduction 

The study of scalar or matrix algebraic 

and or⁄  differential equations has a great 

importance, which dates backs from the early 

days of mathematical analysis, since such 

equations represent among the most common 

types of nonlinear equations, especially in 

mathematical physics and control theory. Also, 

in recent years, there is a common occurrence 

of Riccati equations (REs) in variational 

theory and applied areas of optimal control 

theory, invariant embedding and dynamic 

programming [2]. 

A typical algebraic Riccati equation (ARE) 

is similar to one of the following types [3], [4]. 

The generalized Riccati differential equation 

(RDE) is named after Connt Jacopo Francesco 

Riccati (1676-1754), who was an Italian 

nobleman. The one-dimensional Riccati or 

scalar or generalized RDE has the form 
 

𝑋̇(𝑡) + 𝑞(𝑡)𝑋(𝑡) + 𝑟(𝑡)𝑋2(𝑡) − 𝑝(𝑡) = 0 , 

for all  𝑡 ≥ 0  with initial condition  X(0)= 𝑋0, 

where q, r and p are scalar functions, [2]. 
 

The solution of the matrix Riccati 

differential equation (MRDE) with initial 

condition concerned by [5], where this 

solution is given by using the solution of the 

algebraic form of the Riccati equation. 

Numerical examples are discussed to 

demonstrate the reliability and ability for the 

proposed method. 

The solution of RDEs by Adomain 

decomposition method (ADM) to find the 

analytic solution have been studied by [6]. The 

solution obtained is the form of a series with 

simply computable components. Several 

numerical examples are discussed to find the 

approximate solution of the RDE and then 

comparisons were made with Rung – Kutta 

method and Eulers method. A numerical result 

shows that the method is quite efficient, more 

accurate, easily and is practically well suited. 

A new application of the variational 

iteration method (VIM) for one- dimensional 

quadratic RDE by using Adomian's 

polynomials in which comparisons with the 

ADM, and the exact solution have been made 

by [9]. 

Applied the VIM to solve general one –

dimensional RDEs by considering two 

equations. The first one with a single variable 

coefficient and the other as a special matrix 

form and constructed a correction function 

using VIM by a general Lagrange multiplier. 

Which can be identified via a variational 

theory and show that the VIM yields an 

approximate solution in the form of a quickly 

convergent series. Furthermore, they have 

made a comparison RDE with the exact 

solution and the fourth-order Runge-Kutta 

method by [8]. Numerical results show that the 

VIM is very powerful, efficient and more 

accurate in finding the approximate analytical 

solution, as well as, numerical solutions for 

wide classes of linear and nonlinear 

differential equations.  

In this paper, we will prove the existence 

and uniqness of solution of Riccati differential 

equations of fractional order. Then solve such 

equations using Variation iteration method. As 

well as, the prove of the convergence of the 
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sequence of approximate solutions to the exact 

solution. 

 

Preliminiers 

In this section, some of the most important 

and basic primitive concepts related to this 

work are given:  

 

Definition (1), [7]:  

Let 𝑦: [𝑎, 𝑏] → ℝ be a function, α is a 

positive real number, n is the integer 

satisfying, 𝑚 − 1 < 𝛼 ≤ 𝑚, and 𝛤 is the Euler 

gamma function. Then, the left and right 

Riemann–Liouville fractional integrals of 

order 𝛼 are defined respectively by:  

The lift Riemann–Liouville fractional 

integrals of order 𝛼 
 

𝐼𝑡
𝛼

𝑎
 𝑦(𝑡) =

1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑦(𝑠)𝑑𝑠

𝑡

𝑎
  ......... (1) 

 

The right Riemann–Liouville fractional 

integrals of order 𝛼 
 

𝐼𝑡
𝛼

𝑏
 𝑦(𝑡) =

1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑦(𝑠)𝑑𝑠 

𝑏

𝑡
  ........ (2) 

 

Definition (2), [1]: 

he Caputo fractional order derivative of a 

suitable function  𝑦(𝑡) is defined as: 
 

𝐷𝑡 
𝛼𝑦 

𝑐 (𝑡) =
1

𝛤(𝑚−𝛼)
∫ (𝑡 − 𝑠)𝑚−𝛼−1𝑦(𝑚)(𝑠)𝑑𝑠

𝑡

0
  

 

for 𝑎 ≤ 𝑡 ≤ 𝑏 , where 𝛼∈ ℝ+ and 𝑚 − 1 <
𝛼 ≤ 𝑚, 𝑚 = [𝛼]( [𝛼] is the integer part of 𝛼). 

It is remarkable here to mention some 

properties of fractional order derivatives and 

integrals, which are as follows: 
 

1. 𝐼𝑡
𝛼𝑡𝑣 =

𝛤(𝑣+1)

𝛤(𝑣+𝛼+1)
𝑡𝛼+𝑣, 𝛼 ≥ 0, 𝑚 − 1 < 𝛼 ≤

𝑚, 𝑣 ≥ −1 

2. 𝐷𝑡 
𝛼

 
𝑐 (𝐼𝑡

𝛽
𝑦(𝑡)) = 𝐷𝑡 

𝛼−𝛽
 

𝑐 (𝑦(𝑡)).  

y ∈ 𝐶𝑚[𝑎, 𝑏],   𝛼, 𝛽 ≥ 0,   𝑛 − 1 < 𝛼 ≤ 𝑛, 

  𝛼 + 𝛽 ≤ 𝑚, 𝑡 > 0  

3. (𝐼𝑡
𝛼 𝐷𝑡 

𝛼𝑦 
𝑐 (𝑡)) = 𝑦(𝑡) − ∑ 𝑦(𝑘)(0)

𝑡𝑘

𝑘!

𝑛−1
𝑘=0   

    for  𝑚 − 1 < 𝛼 ≤ 𝑚, t∈ [𝑎, 𝑏].  
 

3. Scalar Riccati Differential Equation of 

Fractional Order 
The Scalar RDE may be generalized and 

studied with fractional derivatives. That may 

be called the scalar fractional Riccati 

differential equation, which  has the form: 
 

𝐷𝑡 
𝛼

 
𝑐 𝑋(t)+q(t)X(t)+r(t)𝑋2(t)−p(t)=0, 

t≥ 0, 0< 𝛼 ≤ 1  .......................................... (3) 
 

with initial condition : 
 

𝑋(0) = 𝑋0  
 

where q, r and p are given scalar functions. 

First, we will study the existence and 

uniqueness of the solution of the scalar Riccati 

differential equation (RDE) of fractional order 

(3) as in the next theorem. 

 

Theorem(1): 

Consider the scalar RDE of fractional 

order (3), which has the equivalent integral 

equation  
 

  𝑋(𝑡) = 𝑋0 +
1

Г(𝛼)
∫ (𝑡 − 𝑠)𝛼−1[𝑝(𝑠) −

𝑡

𝑡0
  

𝑞(𝑠)𝑋(𝑠) − 𝑟(𝑠)𝑋2(𝑠)]𝑑𝑠  
 

and suppose that the integral satisfies Lipschitz 

condition with respect to X such that |𝑞(𝑠)| +

|𝑟(𝑠)|𝑐] <
Г(𝛼+1)

‖𝑇−𝑡0‖𝛼, where c= ‖𝑋1‖ + ‖𝑋2‖,  

‖𝑋1
2 −  𝑋2

2‖ = ‖𝑋1 − 𝑋2‖‖𝑋1 +  𝑋2‖, then 

there exist a unique solution of equation. (3)    

 

Proof:  
Let X∈ 𝐶𝑡

𝛼[0, T], 𝐶𝑡 
𝛼

 
𝑐  is derivative from 

order 𝛼 and to prove that: 
 

𝑁𝑋 = 𝑋0 +
1

Г(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑡

𝑡0
[𝑝(𝑠) −

             𝑞(𝑠)𝑋(𝑠) − 𝑟(𝑠)𝑋2(𝑠)]𝑑𝑠  
 

is a contraction mapping.  
 

Let 𝑋1, 𝑋2 ∈ 𝐶𝑡
𝛼[0, 𝑇], then:  

 

‖𝑁𝑋1 − 𝑁𝑋2‖=‖𝑋0 +
1

Г(𝛼)
∫ (𝑡 −

𝑡

𝑡0

𝑠)𝛼−1[𝑝(𝑠) −  𝑞(𝑠)𝑋1(𝑠) −  𝑟(𝑠)𝑋1
2(𝑠)]𝑑𝑠 −

𝑋0 −  
1

Г(𝛼)
∫ (𝑡 −  𝑠)𝛼−1[𝑝(𝑠) −  𝑞(𝑠)𝑋2(𝑠) −

𝑡

𝑡0

 𝑟(𝑠)𝑋2
2(𝑠)]𝑑𝑠‖ 

=‖
1

Г(𝛼)
∫ (𝑡 − 𝑠)𝛼−1[𝑝(𝑠) − 𝑞(𝑠)𝑋1(𝑠) −

𝑡

𝑡0

𝑟(𝑠)𝑋1
2(𝑠) − 𝑝(𝑠) + 𝑞(𝑠)𝑋2(𝑠) +

𝑟(𝑠)𝑋2
2(𝑠)]𝑑𝑠‖ 

 

  ≤
1

Г(𝛼)
∫ [(𝑡 − 𝑠)𝛼−1|𝑞(𝑠)|‖𝑋1 −  𝑋2‖ +

𝑡

𝑡0

 |𝑟(𝑠)|‖𝑋1
2 −  𝑋2

2‖]𝑑𝑠 
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  ≤
1

Г(𝛼)
∫ [(𝑡 − 𝑠)𝛼−1|𝑞(𝑠)|‖𝑋1 − 𝑋2‖ +

𝑡

𝑡0

 |𝑟(𝑠)|‖𝑋1 − 𝑋2‖‖𝑋1 + 𝑋2‖]𝑑𝑠 

 ≤
1

Г(𝛼)
∫ [(𝑡 − 𝑠)𝛼−1|𝑞(𝑠)|‖𝑋1 − 𝑋2‖ +

𝑡

𝑡0

   |𝑟(𝑠)|‖𝑋1 −  𝑋2‖𝑐]𝑑𝑠   

     =
1

Г(𝛼)
∫ (𝑡 − 𝑠)𝛼−1[|𝑞(𝑠)| +

𝑡

𝑡0

|𝑟(𝑠)|𝑐]‖𝑋1 −  𝑋2‖𝑑𝑠  

  =
1

Г(𝛼)
[|𝑞(𝑠)| + |𝑟(𝑠)|𝑐] ∫ (𝑡 −  𝑠)𝛼−1𝑡

𝑡0
  

   ‖𝑋1 − 𝑋2‖𝑑𝑠  

  =
1

Г(𝛼)
[|𝑞(𝑠)| + |𝑟(𝑠)|𝑐]𝑠𝑢𝑝𝑠𝜖[0,𝑇]|𝑋1(𝑠) −

      𝑋2(𝑠)| ∫ (𝑡 − 𝑠)𝛼−1𝑑𝑠 
𝑡

𝑡0
  

  =
1

Г(𝛼)
[|𝑞(𝑠)| + |𝑟(𝑠)|𝑐] 𝑠𝑢𝑝𝑠∈[0,𝑇]|𝑋1(𝑠) −

     𝑋2(𝑠)| (
−(𝑡−𝑠)𝛼

𝛼
|

𝑡0

𝑡

)  

  ‖𝑡 − 𝑡0‖𝛼=𝑠𝑢𝑝𝑡∈[0,𝑇]|𝑡 − 𝑡0|𝛼, hence: 

‖𝑁𝑋1 − 𝑁𝑋2‖ ≤
[|𝑞(𝑠)|+|𝑟(𝑠)|𝑐]

Г(𝛼+1)
‖𝑋1 −  𝑋2‖(𝑇 −

𝑡0)𝛼   

    =
[|𝑞(𝑠)|+|𝑟(𝑠)|𝑐](𝑇−𝑡0)𝛼

Г(𝛼+1)
 ‖𝑋1 − 𝑋2‖ 

 

Then N is a contraction if 

0 <
[|𝑞(𝑠)|+|𝑟(𝑠)|𝑐]‖𝑇−𝑡0‖𝛼

Г(𝛼+1)
< 1  

i.e., if [|𝑞(𝑠)| + |𝑟(𝑠)|𝑐] <
Г(𝛼+1)

‖𝑇−𝑡0‖𝛼 

 

So, using Banach fixed point theorem, N has a 

unique fixed point X, i.e., NX=X 

Thus, the scalar RDE of fractional order (3) 

has a unique solution.   ∎  

 

4. Variational Iteration Method for solving 

Scalar Fractional RDE 

In this section, the VIM will be used to 

find the approximate solution of equation (3), 

as it is stated and proved in the next theorem: 

 

Theorem(2): 
Consider the RDE of fractional order (3). 

The related variational iteration formula is 

given by: 

 

  𝑋𝑛+1(𝑡)=𝑋𝑛(𝑡) −
𝐼𝛼{ 𝐷𝛼𝑋𝑛(𝑡) + 

𝐶 𝑞(𝑡)𝑋𝑛(𝑡) + 𝑟(𝑡)𝑋2
𝑛(𝑡) −

𝑝(𝑡)} ............................................................  (4) 
 

where 𝑋𝑛 is the 𝑛𝑡ℎ approximation and 𝐼𝑡
𝛼

𝑎
  is 

the lift Riemann-Liouville 's fractional integral 

of order 𝛼 ∈ (0, 1].  

 

Proof:  
Recall that: 

 

𝐷𝛼𝑋𝑛(𝑡) + 𝑞(𝑡) 
𝐶 𝑋𝑛(𝑡) + 𝑟(𝑡) 𝑋2

𝑛(𝑡) −
 𝑝(𝑡) =  ....................................................... (5) 
 

Multiply the above equation by the general 

Lagrange multiplier 𝜆(t, s) yields to: 
 

  𝜆 (t,s){ 𝐷𝛼𝑋𝑛(𝑡) 
𝐶 +𝑞(𝑡)𝑋𝑛(𝑡) + 𝑟(𝑡) 

𝑋2
𝑛(𝑡) − 𝑝(𝑡)} = 0  ................................... (6) 

 

Now, take lift Riemann–Liouville fractional 

integrals of order 𝛼 to the both sides of 

equation (6), which give to:  
 

  𝐼𝑡
𝛼

𝑎
 [𝜆(t,s){ 𝐷𝛼𝑋𝑛(𝑡) 

𝐶 + 𝑞(𝑡)𝑋𝑛(𝑡) +

𝑟(𝑡) 𝑋2
𝑛(𝑡) − 𝑝(𝑡)}] = 0 

 

Then, the correction functional for equation 

(3) will be read as follows: 
 

 𝑋𝑛+1(𝑡) =𝑋𝑛(𝑡) + 𝐼𝑡
𝛼

𝑎
 𝜆(𝑡, 𝑠){ 𝐷𝛼𝑋𝑛(𝑡) 

𝐶 +q(t) 

 𝑋𝑛(𝑡) + 𝑟(𝑡)𝑋̃𝑛
2(𝑡) − 𝑝(𝑡)} = 0  ............... (7) 

 

In this case the value of 𝜆 cannot be 

evaluated easily form equation (7), which  

will give a functional with fractional  

integral. Therefore, the approximation of the 

correctional functional may be expressed as 

follows: 
 

 𝑋𝑛+1(t)= 𝑋𝑛(𝑡) + ∫ 𝜆(𝑡, 𝑠){
𝑑𝑋𝑛(𝑠)

𝑑𝑠

𝑡

0
+

𝑞(𝑠)𝑋𝑛(𝑠) + 𝑟(𝑠)𝑋̃𝑛
2(𝑠) − 𝑝(𝑠)}𝑑𝑠  .......... (8) 

 

for all n=0, 1, 2, ...; where 𝜆  is the general 

Lagrange multiplier for the initial value 

problem:   
 

  𝑋̇(t)+ F( t , X(t))=0, where  

 F( t, X(t))= 𝑞(𝑡)𝑋 + 𝑟(𝑡)𝑋̃2 − 𝑝(𝑡)  
 

Which will give by 𝜆(t, s)=  −1 

and 

 𝑋𝑛+1(𝑡) = 𝑋𝑛(𝑡) − 𝐼𝛼{ 𝐷𝛼𝑋𝑛(𝑡) 
𝐶 +

                  𝑝(𝑡)𝑋𝑛(𝑡) + 𝑞(𝑡)  𝑋2
𝑛(𝑡) −   𝑐(𝑡)}  

∎ 
Theorem (3): 

Let 𝑋, 𝑋𝑛 ∈(𝐶𝛼[0, T], ‖. ‖∞),n= 0,1 … be 

respectively the exact and approximate 

solutions of the scalar RDE of fractional order 

(3). If 𝐸𝑛(t)=𝑋𝑛(t)−X(t), and the nonlinear 

operator  NX= 𝑞𝑋2satisfies condition, such 
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that [
(‖𝑞(𝑡)‖+𝑐‖𝑟(𝑡)‖)

Г(𝛼)
]

𝑛

𝑇𝑛𝛼 < 1 , where 

𝑐 = ‖𝑋𝑛‖ + ‖𝑋 ‖ then the sequence of 

approximate solutions {𝑋𝑛}, n=0, 1, …; 

converge to  exact solution X.  

 

Proof : 

Consider the RDE of fractional order:  

𝐷𝛼𝑋(𝑡) + 𝑞(𝑡) 
𝐶 𝑋(𝑡) + 𝑟(𝑡)𝑋2(𝑡) = 𝑝(𝑡), 

X(0)=  𝑋0 
 

Where the approximate solutions using the 

VIM is given by: 
 

   𝑋𝑛+1(𝑡) = 𝑋𝑛(𝑡) − 𝐼𝛼{ 𝐷𝛼𝑋𝑛(𝑡) 
𝐶 +

                      𝑞(𝑡)(𝑡)) +𝑟(𝑡)𝑋2
𝑛

(𝑡) − 𝑝(𝑡)}, 

0 < 𝛼 ≤ 1 
 

Since X is the exact solution of the integral 

equations of fractional order, hence: 
 

𝑋(𝑡) = 𝑋(𝑡) − 𝐼𝛼{ 𝐷𝛼𝑋 
𝐶 (𝑡) + 𝑞(𝑡)𝑋(𝑡) +

             𝑟(𝑡)𝑋2(𝑡) − 𝑝(𝑡)}  
 

Hence, subtracting X from 𝑋𝑛+1 yields to: 
 

𝑋𝑛+1(t) − X(t)=X𝑛(t) − X(t) −
                          Iα{ DαXn(t) 

C − DαX 
C (t) +

                        𝑞(𝑡)Xn(𝑡)  − q(t)X (t) + 𝑟(𝑡) 

X2
n(t) − r(t) X2(t) + p(t) − p(t)} 

 

Hence: 

𝐸𝑛+1(𝑡) = 𝐸𝑛(𝑡 ) − 𝐼𝛼{ 𝐷𝛼
 

𝐶 𝐸𝑛(𝑡) +

𝑞(𝑡)𝐸𝑛(𝑡) + 𝑟(𝑡) (𝑋2
𝑛

− 𝑋2)}   

= 𝐸𝑛(0) − 𝐼𝛼{𝑞(𝑡)𝐸𝑛(𝑡) + 𝑟(𝑡) (𝑋𝑛 +

𝑋)(𝑋𝑛 − 𝑋)}  

= 𝐸𝑛(𝑡)− 𝐼𝛼{𝑞(𝑡)𝐸𝑛(𝑡) + 𝑟(𝑡)(𝑋𝑛 + 𝑋)𝐸𝑛}   
 

𝐸𝑛(0) = 𝑋𝑛(0) − 𝑋(0), with 𝑋𝑛(0) = 𝑋(0), 

then 𝐸𝑛(0) = 0.  

Therefore:  

  𝐸𝑛+1(𝑡)=− 𝐼𝛼{𝑞(𝑡)𝐸𝑛(𝑡)} −  𝐼𝛼{𝑟(𝑡) (𝑋𝑛 +
                   𝑋)𝐸𝑛(𝑡)}     

              =−
1

Г(𝛼)
 ∫ (𝑡 − 𝑠)𝛼−1𝑡

0
𝑞(𝑠)𝐸𝑛(𝑠)𝑑𝑠 −

                     
1

Г(𝛼)
 ∫ (𝑡 − 𝑠)𝛼−1𝑡

0
𝑟(𝑠) (𝑋𝑛 +

                     𝑋)𝐸𝑛(𝑠)𝑑𝑠 
Hence, upon taking the supremum norm, we 

have:  
 

‖𝐸𝑛+1(𝑡)‖∞ ≤
1

Г(𝛼)
∫ (𝑡 − 𝑠)𝛼−1‖𝐸𝑛(𝑠)‖∞

𝑡

0
 

‖𝑞(𝑠)‖𝑑𝑠 +
1

Г(𝛼)
∫ ‖𝑡 −  𝑠‖𝛼−1‖(𝑋𝑛 +

𝑡

0

𝑋)‖‖𝐸 
𝑛(𝑠)‖∞    ‖𝑟(𝑠)‖𝑑𝑠 

 

 ≤
‖𝑞(𝑡)‖

Г(𝛼)
∫ (𝑡 − 𝑠)𝛼−1‖𝐸𝑛(𝑠)‖∞𝑑𝑠 

𝑡

0
  

  +
1

Г(𝛼)
∫ 𝑠𝑢𝑝𝑠∈[0,𝑇]|𝑡 −   𝑠|𝛼−1𝑡

0
 
 

(‖𝑋𝑛‖ + ‖𝑋 ‖)‖𝐸𝑛(𝑠)‖∞‖𝑟(𝑡)‖𝑑𝑠  
 

 ≤
‖𝑞(𝑡)‖

Г(𝛼)
∫ ‖𝑡 − 𝑠‖𝛼−1‖𝐸𝑛(𝑠)‖∞𝑑𝑠 +

𝑡

0
1

Г(𝛼)
∫ 𝑠𝑢𝑝𝑠∈[0,𝑇]|𝑡 − 𝑠|𝛼−1𝑐

𝑡

0
  

‖𝐸𝑛(𝑠)‖∞‖𝑟(𝑡)‖𝑑𝑠  

≤ (‖𝑞(𝑡)‖ + 𝑐‖𝑟(𝑡)‖)
1

Г(𝛼)
  

 ∫ 𝑠𝑢𝑝𝑠∈[0,𝑇]|𝑡 − 𝑠|𝛼−1 ‖𝐸𝑛(𝑠)‖∞𝑑𝑠 
𝑡

0
  

 ≤
(‖𝑞(𝑡)‖+𝑐‖𝑟(𝑡)‖)

Г(𝛼)
∫ 𝑡𝛼−1 ‖𝐸𝑛(𝑠)‖∞𝑑𝑠 

𝑡

0
  

                  ≤
(‖𝑞(𝑡)‖+𝑐‖𝑟(𝑡)‖)

Г(𝛼)
𝑡𝛼−1 ∫  ‖𝐸𝑛(𝑠)‖∞𝑑𝑠  

𝑡

0
  

 

Where n=0, 1, 2, …;   

Now, if n=0, then: 
 

 ‖𝐸1(𝑡)‖∞ ≤
(‖𝑞(𝑡)‖+𝑐‖𝑟(𝑡)‖)

Г(𝛼)
𝑡𝛼−1  

∫  ‖𝐸0(𝑠)‖∞𝑑𝑠 
𝑡

0
  

≤
(‖𝑞(𝑡)‖+𝑐‖𝑟(𝑡)‖)

Г(𝛼)
𝑡𝛼−1  

∫ 𝑠𝑢𝑝𝑠∈[0,𝑇]|𝐸0(𝑠)|∞
𝑡

0
𝑑𝑠  

≤
(‖𝑞(𝑡)‖+𝑐‖𝑟(𝑡)‖)

Г(𝛼)
   

 𝑡𝛼−1𝑠𝑢𝑝𝑠∈[0,𝑇]|𝐸0(𝑠)| ∫ 𝑑𝑠
𝑡

0
  

 ≤
(‖𝑞(𝑡)‖+𝑐‖𝑟(𝑡)‖)

Г(𝛼)
  

𝑡𝛼𝑠𝑢𝑝𝑠∈[0,𝑇]|𝐸0(𝑠)|  
 

Also, for n=1, we have:  

‖𝐸2(𝑡)‖∞  ≤
(‖𝑞(𝑡)‖+𝑐‖𝑟(𝑡)‖)

Г(𝛼)
𝑡𝛼−1  

∫ ‖𝐸1(𝑠)‖∞
𝑡

0
𝑑𝑠  

≤
(‖𝑞(𝑡)‖+𝑐‖𝑟(𝑡)‖)

Г(𝛼)
𝑡𝛼−1  

∫
(‖𝑞(𝑡)‖+𝑐‖𝑟(𝑡)‖)

Г(𝛼)
𝑠𝛼𝑡

0
   

𝑠𝑢𝑝𝑠∈[0,𝑇]|𝐸0(𝑠)|∞𝑑𝑠   

≤ [
(‖𝑞(𝑡)‖+𝑐‖𝑟(𝑡)‖)

Г(𝛼)
]

2

  

 𝑡𝛼−1𝑠𝑢𝑝𝑠∈[0,𝑇]|𝐸0(𝑠)| ∫ 𝑠𝛼𝑡

0
𝑑𝑠  

≤ [
(‖𝑞(𝑡)‖+𝑐‖𝑟(𝑡)‖)

Г(𝛼)
]

2 𝑡2𝛼

𝛼+1
  

𝑠𝑢𝑝𝑠∈[0,𝑇]|𝐸0(𝑠)|  
 

 
 

Similarly, for n =2, then: 
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‖𝐸3(𝑡)‖∞ ≤
(‖𝑞(𝑡)‖+𝑐‖𝑟(𝑡)‖)

Г(𝛼)
𝑡𝛼−1  

     ∫ ‖𝐸2(𝑠)‖∞
𝑡

0
𝑑𝑠  

 ≤
(‖𝑞(𝑡)‖+𝑐‖𝑟(𝑡)‖)

Г(𝛼)
𝑡𝛼−1  

     ∫ [
(‖𝑞(𝑡)‖+𝑐‖𝑟(𝑡)‖)

Г(𝛼)
]

2𝑡

0
  

     
𝑠2𝛼

𝛼+1
𝑠𝑢𝑝𝑠∈[0,𝑇]|𝐸0(𝑠)|∞𝑑𝑠  

 

 ≤ [
(‖𝑞(𝑡)‖+𝑐‖𝑟(𝑡)‖)

Г(𝛼)
]

3

𝑡𝛼−1  

𝑠𝑢𝑝𝑠∈[0,𝑇]|𝐸0(𝑠)| ∫
𝑠2𝛼

𝛼+1
𝑑𝑠

𝑡

0
  

 

  ≤ [
(‖𝑞(𝑡)‖+𝑐‖𝑟(𝑡)‖)

Г(𝛼)
]

3

𝑡𝛼−1  

𝑠𝑢𝑝𝑠∈[0,𝑇]|𝐸0(𝑠)|
𝑡2𝛼+1

3𝛼+1
    

 ≤ [
(‖𝑞(𝑡)‖+𝑐‖𝑟(𝑡)‖)

Г(𝛼)
]

3

  

                     
𝑡3𝛼

3𝛼+1
𝑠𝑢𝑝𝑠∈[0,𝑇]|𝐸0(𝑠)|   

 

and so on, in general, for any natural number n 
 

 ‖𝐸𝑛(𝑡)‖ ≤ [
(‖𝑞(𝑡)‖+𝑐‖𝑟(𝑡)‖)

Г(𝛼)
]

𝑛

  

                    
𝑡(𝑛+1)𝛼

((2𝑛−1)𝛼+1)
   

𝑠𝑢𝑝𝑠∈[0,𝑇]|𝐸0(𝑠)|   

≤ [
(‖𝑞(𝑡)‖+𝑐‖𝑟(𝑡)‖)

Г(𝛼)
]

𝑛

  

                   
𝑇(𝑛+1)𝛼

((2𝑛−1)𝛼+1)
𝑠𝑢𝑝𝑠∈[0,𝑇]|𝐸0(𝑠)|  

 

If ‖𝑞(𝑡)‖ + 𝑐‖𝑟(𝑡)‖ 𝑇𝛼 < 1, and as n→ ∞ , 

then [
(‖𝑞(𝑡)‖+𝑐‖𝑟(𝑡)‖)

Г(𝛼)
]

𝑛

𝑇(𝑛+1)𝛼 → 0, which 

implies that ‖𝐸𝑛(𝑡)‖∞ →0  i.e., 𝑋𝑛(t)→X(t), 

as n→ ∞ , which means that the sequence of 

approximate solution using the equation (3) 

converge to the exact solution    ∎ 

 

5. lllustrative Examples 

In this section, some illustrative examples 

will be considered and simulated using 

computer programs written in Mathcad15. 
 

Example (1):  

Consider the scalar RDE [10]:  

𝐷𝑡 
𝛼

 
𝑐 𝑋(𝑡) = 1 + 𝑡2 − 𝑋2(𝑡),∈ 𝛼[0,1],t∈ [0, 1]  

 .................................... (9) 
 

With initial condition:  𝑋0(t)= 1 

Compare between equation (9) and equation 

(3) yields:  

q(𝑡) = 0, 𝑟(𝑡) = 1, p(𝑡) =1+𝑡2 

For the comparison purpose, the exact solution 

of equation (3):  
 

𝑋(𝑡) = 𝑡 +
𝑒−𝑡2

1+∫ 𝑒−𝑢2
𝑑𝑢

𝑡
0

  

 

In the VIM, we have freely to choose the 

initial approximate solution and hence starting 

with the initial solution 𝑋0(t)= 1 and by 

applying the VIM for equation (9), we get if 

 𝛼 = 0.8, then the first approximate solution. 

 

𝑋1(𝑡) = 𝑋0(𝑡) − 𝐼0.8{ 𝐷0.8𝑋0(𝑠) + 𝑋0
2(𝑠) − 

𝐶   

𝑠2 − 1} 
   = 1.07 ∙ 𝑡0.8 + 0.426 ∙ 𝑡2.8  
and also the second approximate solution  

𝑋2(𝑡) = 𝑋1(𝑡) − 𝐼0.8{ 𝐷0.8𝑋1(𝑠) + 𝑋1
2(𝑠) − 

𝐶   

      𝑠2 − 1} 
  

= −0.275 ∙ 𝑡4.4 − 0.553 ∙ 𝑡2.4 + 1.074   
𝑡0.8  + 0.335 ∙ 𝑡2.8  − 0.04 ∙ 𝑡6.4 +  0.426 ∙ 𝑡2.8   
 

and so on we may compute  𝑋3, 𝑋4,…. In 

Table (1) we present the 4
th

 approximate 

solution. 
 

Table (1) 

Comparison between the exact and 

approximate solution for 𝑿𝟒(𝒕). 
 

t Exact solution 𝑿𝟒(𝒕) 

0 0 0 

0.1 1.000317 0.165 

0.2 1.0024198 0.279 

0.3 1.0077945 0.375 

0.4 1.0176508 0.462 

0.5 1.0329575 0.543 

0.6 1.0544668 0.619 

0.7 1.0827274 0.692 

0.8 1.1180925 0.764 

0.9 1.1607239 0.837 

1 1.204 0.918 

 

Also, sketch of the approximate solutions 

are  presented in Fig. (1) 
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Fig.(1): The approximate solutions of 

example (1) by using the proposed method at 

different values of α  at α=0.8. 

 

Example (2):  

Consider the nonlinear RDE : 

𝐷𝑡 
𝛼

 
𝑐 𝑋(𝑡) + 𝑡𝑋(𝑡) +𝑋2(𝑡)=𝑡2, 0 < 𝛼 ≤ 1, 

t∈ [0,1]  ...................................................... (10) 
 

with initial condition    𝑋0(𝑡)=1 
 

Comparing equation (10) with equation (3), 

we get p(t)=t, q(t)=1, c(t)=𝑡2. Then the VIM 

for equation (10) is:  
 

𝑋𝑛+1 = 𝑋𝑛 − 𝐼𝛼{ 𝐷𝛼𝑋𝑛(𝑠) + 𝑠𝑋𝑛(𝑠) + 
𝐶  

         𝑋𝑛
2(𝑠) − 𝑠2} 

   
 

For 𝛼 = 0.2 ,then the approximates solution, 

are given by  
 

𝑋1 = 𝑋0 − 𝐼0.2{ 𝐷0.2𝑋0(𝑠) + 𝑠𝑋0(𝑠) + 
𝐶  

        𝑋0
2(𝑠) − 𝑠2} 

  

     = 0.825∙ 𝑡2.2 

𝑋2 = 𝑋1 − 𝐼0.2{ 𝐷0.2𝑋1(𝑠) + 𝑠𝑋1(𝑠) + 
𝐶  

              𝑋1
2(𝑠) − 𝑠2} 

      

        = −0.257∙ 𝑡5.2 + 1.65 ∙ 𝑡2.2 − 0.248 ∙
                𝑡2.2 − 0.454 ∙ 𝑡3.7 ⋮ 
 

and so on we may compute  𝑋3, 𝑋4, … which 

will be more complicated to be evaluated and 

so we present then numerical results for the 4
th

 

approximate solution, as it is presented in 

Table (2)  

 

 

 

 

 

 

 

 

Table (2) 

Comparison between the exact and 

approximate solution for 𝑿𝟒(𝒕). 
 

t Exact solution 𝑿𝟒(𝒕) 

0 0 0 

0.1 3.32666037∙ 10−4 0.013 

0.2 2.64525494∙ 10−3 0.056 

0.3 8.83672133∙ 10−3 0.124 

0.4 0.02064171 0.206 

0.5 0.03954439 0.286 

0.6 0.06669229 0.346 

0.7 0.10281696 0.372 

0.8 0.14817032 0.358 

0.9 0.20248288 0.312 

1 0.26493764 0.251 

 

Also, sketch of the approximate solutions 

are  presented in Fig. (2) 

 

Fig.(2): The approximate solution of example 

(2) by using the proposed method at different 

values of α  at α=0.2. 
 

If 𝛼 = 1, then the solution given in Table (3): 

𝑋1=𝑋0 −
𝐼1{ 𝐷1𝑋0(𝑠) + 𝑠𝑋0(𝑠) + 𝑋0

2(𝑠) − 𝑠2} 
𝐶  

      =
𝑡3

3
 

𝑋2=𝑋1 −
𝐼1{ 𝐷1𝑋1(𝑠) + 𝑠𝑋1(𝑠) + 𝑋1

2(𝑠) − 𝑠2} 
𝐶      

     =
𝑡3

3
−

𝑡5

15
−

𝑡7

63
 

⋮ 
and so on we may compute  𝑋3, 𝑋4,… which 

will be more complicated and the results for 

X4(t) are presented in Table (3). 
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Table (3) 

Comparison between the exact and 

approximate solution for ten iteration. 
 

t Exact solution 𝑿𝟒(𝒕) 

0 0 0 

0.1 3.32666037∙ 10−4 3.327∙ 10−4 

0.2 2.64525494∙ 10−3 2.645∙ 10−3 

0.3 8.83672133∙ 10−3 8.837∙ 10−3 

0.4 0.02064171 0.021 

0.5 0.03954439 0.04 

0.6 0.06669229 0.067 

0.7 0.10281696 0.103 

0.8 0.14817032 0.148 

0.9 0.20248288 0.202 

1 0.26493764 0.265 
 

Also, sketch of the approximate solutions 

are  presented in Fig. (3) 
 

 
Fig.(3): The approximate solution of example 

(2) by using the proposed method at different 

values of α  at α=1. 
 

6. Conclusion 

The existence and uniqueness theorem of 

the solution of scalar RDE and fractional order 

RDE are proved in this paper two and then 

find its approximate by applying the VIM by 

deriving the general form of the iterative 

approximate sequence of solutions for this 

equation and then proved the convergence of 

the obtained sequence of approximate 

solutions to the exact solution. This proof is 

based on using the mathematical induction to 

derive a general formula. Numerical examples 

have been considered to explain how to apply 

this method for solving scalar RDE of 

fractional order and reliable results are 

obtained. For scalar RDE, we implemented the 

VIM to find approximate analytical solution 

and comparative solution with the exact 

solution, if exist, have made. 
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