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Abstract 
The quantum Finite Square Well (FSW) model is a well-known topic in most quantum 

mechanics (QM) books. A couple of equations can be derived from one dimensional Schrodinger 

equation for a finite potential well for describing the bound Eigen states within the well. Sometimes 

the FSW problem does not have an exact solution, yet, there are in fact exact solutions. 

In this work a computational techniques is adopted to find the exact solution for FSW. To 

achieve this computational solution, a computer program has been written in Basic language for 

calculating the Eigen state energy for a particle confined in finite potential well using the iterative 

method (IM). Six values of potential width  have been studied with potential depth. The results 

showed that wider potential width led us to more bound states, while narrower potential width led 

us to less bound states. Six values of potential depth have been studied with potential width. The 

results showed that larger potential depth led us to more bound states, while smaller potential width 

led us to less bound states. 

A Comparison Between Finite and Infinite Potential Well has been also presented. The result of 

comparison showed that energy levels of an infinite well are much higher than that the 

corresponding energy levels for finite potential well. 

In general, the matching between the results of the iterative method and the graphical method 

(GM) proving that the iteration method can be regarded as a useful tool for describing the solutions 

of the 1-dimensional FSW problem.             [DOI: 10.22401/ANJS.22.4.07] 

 

Keywords: Finite Potential Well, Computational Techniques, Schrödinger Equation. 
 

1. Introduction 

The quantum mechanics mathematics is 

usually introduced through physical systems 

described by one dimensional wells [1, 2].
 
These 

examples are used to show the emergence of 

quantized states as solutions of the Schrödinger 

equation subject to appropriate boundary 

conditions. Unfortunately, there are not many 

potentials for which the bound state energies can 

be expressed in closed form. The classic example 

is the infinite square well, but it is obviously 

artificial. In the more realistic case where the 

potential well is finite, the allowed energies as 

functions of the barrier height can be found 

numerically by solving a transcendental equation 

[3], by graphical methods [4- 6] or by various 

approximation techniques [7- 10]. 

Quantum well models are essential for the 

structure of semiconductor devices, for example 

the quantum well infrared photodetector (QWIP), 

which is utilized for infrared imaging applications 

[11]. The QWIP relies upon a quantum well that 

has been sized so that the energy of an electron in 

the first excited state is quite near the threshold of 

confinement in the well. 

The QWIP is therefore very sensitive to the 

arrival of a single photon. There are numerous 

different uses of quantum well models in 

nanostructures; the textbook by Harrison [12] 

give a good literature survey in this field. 

The finite quantum well is of great practical 

importance because it forms the basis for 

understanding low-dimensional structures such as 

quantum well devices [11].  

 

2- Derivation of Transact Equations 

The choice of potential V (r) decides what 

system that will be modeled. A potential with 

an easy analytic solution can be used for 

testing the accuracy, convergence and stability 

of the numerical methods. A more advanced 

potential that cannot be solved analytically 

may be a better approximation of the real 

problem [13]. 
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Consider the potential shown in Fig.(1), 

the particle has energy, E , less than 𝑉𝑜, and is 

bound to the well [1, 14 ]. 

 

 
Fig.(1): A finite square well, depth, Vo , width 

2a . 

 

The finite 1 D square well potential V(x) can 

be described by the following [14 ]. 
 

𝑉(𝑥) =  {

𝑉𝑜    𝑖𝑓 𝑥 ≤ −𝑎
0     𝑖𝑓 −𝑎 ≤ 𝑥 ≤ 𝑎
𝑉𝑜    𝑖𝑓 𝑥 ≥ −𝑎

}  ........ (1) 

 

Consider the time-independent 

Schrodinger equation in one dimension,  
 

𝑑2𝜓

𝑑𝑥2  +
2𝑚

ħ2  (𝐸 −  𝑉(𝑥))𝜓 = 0  ...................... (2) 
 

Fig.(1) divide the width into three regions 

I, II, and III according to the potential. 

 

Region I 

In this region 𝑥 ≤  −𝑎  and 𝑉(𝑥) = 𝑉𝑜 , 

then  Schrodinger equation is written as: 
 

𝑑2𝜓𝐼

𝑑𝑥2
 +

2𝑚

ħ2
 (𝐸 −  𝑉𝑜)𝜓𝐼 = 0  ....................... (3) 

 

Let 
 

𝛽
2

=  
2𝑚

ħ2
  (𝑽𝒐 −  𝐸)  .................................. (4) 

 

Then  
𝑑2𝜓𝐼

𝑑𝑥2 − 𝛽
2

𝜓𝐼 = 0  ........................................ (5) 
 

The solutions to this differential equation 

are: 
 

𝜓𝐼 = 𝐶 𝑒𝛽𝑥   + 𝐷 𝑒−𝛽𝑥  .............................. (6) 
 

But, since 𝜓𝐼−→ 0            𝑎𝑠   𝑥 −→  − ∞.   

This condition is satisfied  when the constant 

D equal to 0, then the solution became  

𝜓𝐼 = 𝐶 𝑒𝛽𝑥  ................................................. (7) 

 

Region III 

In region III, Schrodinger equation is 

written as: 
 

 
𝑑2𝜓𝐼𝐼𝐼

𝑑𝑥2  +
2𝑚

ħ2  (𝐸 −  𝑉𝑜)𝜓𝐼𝐼𝐼 = 0  ................. (8) 
 

Or 
 

𝑑2𝜓𝐼𝐼𝐼

𝑑𝑥2
− 𝛽

2
𝜓𝐼𝐼𝐼 = 0  .................................... (9) 

𝜓𝐼𝐼𝐼 = 𝐶 𝑒𝛽𝑥   + 𝐷 𝑒−𝛽𝑥  ........................... (10) 
 

but since 𝜓𝐼𝐼𝐼−→ 0            𝑎𝑠   𝑥 −→  + ∞,  

This condition is satisfied when the constant C 

= 0, then the solution became  
 

𝜓𝐼𝐼𝐼 = 𝐷 𝑒−𝛽𝑥  ........................................... (11) 
 

Region II 

In region II the potential equal to zero, 

then equation (2) can be written as  
 

− 
ħ2

2𝑚 

𝑑2𝜓𝐼𝐼

𝑑𝑥2  = 𝐸𝜓𝐼𝐼   .................................. (12) 
 

Or 
 

𝑑2𝜓𝐼𝐼

𝑑𝑥2  +   
2𝑚𝐸

ħ2 
 𝜓𝐼𝐼  = 0  .............................. (13) 

 

Let 
 

𝛼2 =  
2𝑚𝐸

ħ2 
   ................................................. (14) 

 

Then equation (12) became 
 

𝑑2𝜓𝐼𝐼

𝑑𝑥2
 +  𝛼2 𝜓𝐼𝐼  = 0  ................................. (15) 

 

and the solution [14]. 
 

𝜓𝐼𝐼 = 𝐴 𝑆𝑖𝑛  𝛼𝑥 + 𝐵 𝐶𝑜𝑠  𝛼𝑥  ................... (16) 
 

where A, B, C, D are constants  

To find the  constants values, four 

equations must be found. These equations can 

be found by applying the condition of 

continuity 
 

{

𝜓𝐼 = 𝜓𝐼𝐼

𝑑𝜓𝐼

𝑑𝑥
=  

𝑑𝜓𝐼𝐼

𝑑𝑥

}                𝑎𝑡           𝑥 =  −𝑎   

{

𝜓𝐼𝐼𝐼 = 𝜓𝐼𝐼

𝑑𝜓𝐼𝐼𝐼

𝑑𝑥
=  

𝑑𝜓𝐼𝐼

𝑑𝑥

}                𝑎𝑡           𝑥 =  𝑎  
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Since the potential is symmetric, then the 

wave functions have defined parity (odd or 

even). 

 

Even parity 

To satisfy the even parity condition, the 

following conditions must be satisfied, 

𝜓(+𝑥) = 𝜓(−𝑥) and the value of A in equation 

(16) must be zero. Equation (16) can be re 

written as  
 

𝜓𝐼𝐼 = 𝐵 𝐶𝑜𝑠  𝛼𝑥  ........................................ (17) 
 

Also, the constant C in equation (7) and the 

constant D in equation (11) must be equal then  

equations can be re written as  
 

𝜓𝐼 = 𝐶 𝑒𝛽𝑥  ................................................ (18) 

𝜓𝐼𝐼𝐼 = 𝐶 𝑒−𝛽𝑥  ........................................... (19) 
 

By applying the condition of continuity at x = 

+a ( i.e. 𝜓𝐼𝐼 = 𝜓𝐼𝐼𝐼 ) 
 

𝐵 𝐶𝑜𝑠  𝛼𝑎 =  𝐶 𝑒−𝛽𝑎  ................................ (20) 
 

and 
 

− 𝛼𝐵𝑆𝑖𝑛  𝛼𝑎 =  −𝛽 𝐶 𝑒−𝛽𝑎  ..................... (21) 
 

Dividing equation (21) on equation (20) 

yield  
 

α tan 𝛼 a = β     f𝑜𝑟 𝑒𝑣𝑒𝑛 𝑝𝑎𝑟𝑖𝑡𝑦  ............. (22) 

 

odd parity 

In this case 𝜓(+𝑥) = − 𝜓(−𝑥)  and the 

value of B in equation (16) must be zero. 

Equation (16) can be re written as  
 

𝜓𝐼𝐼 = 𝐴 𝑆𝑖𝑛  𝛼𝑥  ........................................ (23) 
 

Also, the constant C in equation (7) equal 

to the negative value of constant D in equation 

(11) then  equations can be re written as  
 

𝜓𝐼 = −𝐷 𝑒𝛽𝑥  ............................................ (24) 

𝜓𝐼𝐼𝐼 = 𝐷 𝑒−𝛽𝑥  ........................................... (25) 
 

By applying the condition of continuity at x = 

+a (I.e. 𝜓𝐼𝐼 = 𝜓𝐼𝐼𝐼 ) 
 

𝐴 𝑆𝑖𝑛  𝛼𝑎 =  𝐷 𝑒−𝛽𝑎  ................................. (26) 
 

And 
 

𝛼𝐴𝐶𝑜𝑠  𝛼𝑎 =  −𝛽 𝐷 𝑒−𝛽𝑎  ........................ (27) 

dividing equation (27) by equation (26) to 

eliminate A and D gives 
 

α cot α a = −β     for odd parity  .............. (28) 
 

now let 
 

𝑘 =  𝛼 𝑎   .................................................... (29) 
 

by using equation (14). 
 

𝑘 =  
𝑎

ħ
 √2𝑚𝐸   ........................................... (30) 

 

or  
 

𝐸 =  
k2ħ2 

2 m a2  ................................................. (31) 
 

and let 
 

𝑏 =  
𝑎

ħ
 √2mVo ........................................... (32) 

 

From equation (3) and equation (14) 
 

α

𝛽
= =  √

 𝐸

  (𝑉𝑜− 𝐸)
 =  √

 𝑘2

  (𝑏2− 𝑘2)
 .................. (33) 

 

Also from equation (22) for even parity 

and equation(28) for odd parity the following 

equations can be extracted  
 

α

β
= Cot α a         for even parity   .............. (34) 

α

β
= −tan α a        for odd parity   .............. (35) 

 

Note that: since β = √ 
2m

ħ2   (Vo −  E)  and 

α =  √
2mE

ħ2 
 , in both equation (4) and (14) 

respectively, there is only one unknown, the 

energy, E ; so we should be able to solve for 

the energy. 

The solution of these implicit equations 

can be obtained by using either the graphical 

solution method or using suitable numerical 

method like Iterative method, Newton-

Raphson method ….etc.  

 

3- Result and Discussions 

A computer program was written in basic 

language is utilized to calculate the Eigen 

value energies for a particle confined in finite 

and infinite potential well by adopting iterative 

method. The main program code was built 

with a number of supplement sub programs 

(routines).  
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Fig.(2) show the flow chart of the main 

program which is used for calculating the 

Eigen values using the iterative method. 

 

 
 

Fig.(2): Flow chart utilized for calculating 

the Eigen values energies. 
 

This program responsible on the process of 

the iterative method by utilizing equations (33) 

with eq (34) for even parity, and eq (35) for 

odd parity and continue looping between these 

equations until the result became less or equal 

the input of the tolerance error. The first step 

in the main program start by determining the 

number of energy states according to the input 

values of potential depth (PD) and potential 

width (PW). 

To test the output results precision 

throughout the execution the program, a 

comparison study is made between the results 

obtained from graphical method (GM) and the 

results obtained from the adopted numerical 

iterative method (IM). The Finite Square Well 

program is performed to calculate the Eigen-

Energies with a tolerance accuracy of 

0.000001 (This value can be altered manually 

in the code, by changing the constant tolerance 

value). 

Fig.(3) show a graphical solution for the 

energy Eigenvalues of the six bound states for  

an electron confined in a 4 A
o
, 75 eV finite 

potential well [15]. 

 
 

Fig.(3): A graphical solution for the energy 

Eigenvalues of the six bound states of an 

electron in a 4 A
o
, 75 eV finite potential well 

[16]. 
 

Table (1) present the Eigen value energy 

results between the result obtained from 

graphical for potential width 4A
o
 and potential 

depth 75eV [15] in addition to the obtained 

result from the iterative method (IM) of the 

present work for the same boundary condition.  
 

Table (1)  

Eigen value from GM and IM  

for PW 4 A
o
 and PD 75 eV. 

 

n Parity  

Eigen value 

(eV) (GM) 

Ref [15] 

Eigen Value 

(eV) (IM) 

Present Work 

1 Even 1.9 1.901826 

2 Odd 7.6 7.586675 

3 Even 16.9 16.95550 

4 Odd 29.9 29.95245 

5 Even 46.1 46.17400 

6 Odd 64.6 64.75384 

 

3-1 Potential Width  (PW) Effect 

Four values of potential width (2, 4, 6, and 

8 A
o
) are studied with potential depth (16 eV). 

The result of energy Eigen values for these 

boundary condition parameters using the 

iteration  method are tabulated in table (2) .  
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Table (2)  

The result of Eigen value from numerical 

method  for four values of potential width 

and potential depth 16 eV. 
 

n 
PD 

(eV) 

PW 

(A
o
) 

n
th

 

Result 

Eigen Value 

(eV) (IM) 

1 

16 

2 2 
4.137227 

15.39703 

2 4 3 

1.513965 

5.919476 

12.55995 

3 6 4 

0.7726148 

3.067378 

6.798559 

11.72331 

4 8 6 

0.466942 

1.861466 

4.162131 

7.321645 

11.22829 

15.4325 

 

The results of table (2) show that larger 

potential width led us to more bound state, 

while smaller potential width led us to less 

bound states  

 

3-2 Potential Depth  (PD) Effect  

Six values of potential depth (4, 8, 12, 16, 

20 and 24 (eV) is studied with potential width 

4 (A
o
). The result of energy Eigen values for 

these boundary condition parameters using the 

iteration  method are tabulated in Table (3). 

The results of table (3) show that the following 

remarks: 

• larger PD led us to more bound states, while 

smaller PD led us to less bound states  

• The energy of the n
th

 state is less than the 

infinite potential well. This means inside finite 

potential well type of potentials the number of 

quantum states is finite 

 

 

 

 

 

 

 

 

 

 

Table (3)  

The result of Eigen value from numerical 

method  for six values of potential depth (eV) 

and potential width 4 A
o
. 

 

n 
PW 

(A
o
) 

PD 

(eV) 

n
th

 

Result 

Eigen Value 

(eV) (IM) 

1 

4 

4 
1 

2 

1.034307 

3.849257 

2 8 
1 

2 

1.285277 

4.846983 

3 12 

1 

2 

3 

1.423374 

5.504372 

12.28175 

4 16 

1 

2 

3 

1.513965 

5.919476 

12.55995 

5 20 

1 

2 

3 

1.582808 

6.225575 

13.46658 

6 24 

1 

2 

3 

4 

1.633098 

6.44743 

14.09409 

24.33458 

 

3.3-Comparison Between Finite and Infinite 

Potential Well  

Table (4) presents the comparison for the 

four bound stated in a 2 nm (20 A
o
) potential 

width, and 1 eV potential depth for one 

dimensional finite potential well and infinite 

potential well 
 

Table (4)  

Comparison of infinite and Finite  

Potential Wells. 
 

PW 

(A
o
) 

n
th

 

Eigen Value (eV) 

Ref 

[16] 
Present Work 

Infinite 

Potential 

Infinite 

Potential 

Finite 

Potential 

(1) eV) 

20 

1 
 

2 
 

3 
 

4 

0.094 
 

0.377 
 

0.848 
 

-------- 

0.094138 
 

0.376551 
 

0.847239 
 

1.506203 

0.065849 
 

0.260150 
 

0.569726 
 

0.941164 

 

Fig.(4) showes The four bound stated in a 

2 nm (20 A
o
) potential width, and 1 eV (PD) 
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for one dimensional a- finite potential well b- 

infinite potential well. 
 

Fig.(4): The four bound stated in a 2 nm  

(20 A
o
) potential width, and 1 eV (PD) for 

one dimensional a- finite potential well b- 

infinite potential well. 
 

Table (4) and Fig.(4) showes that the 

calculated energy levels in the finite potential 

well are lower than the corresponding energy 

levels in the infinite potential well of the same 

width ( E1 = 0.094 eV, E2  0.377 eV, and E3 = 

0.848 eV). This is not surprising because the 

wave function in the finite potential well 

extends into the classically forbidden region, 

according to that the corresponding 

wavelengths are longer than those in the 

infinite potential well and therefore reduces its 

kinetic energy. 

Table (5) presents the results of Eigen 

states values for finite potential well for 

potential width 4 A
o
 with three values of 

potential depth (25, 50, and 125 eV) in 

addition to the corresponding calculated Eigen 

states values for infinite potential well. The 

results also show that how the corresponding 

energy levels of an infinite well are much 

higher. In finite potential well the particle is 

not strictly contained and the location extends 

into classically forbidden region. 

Table (5) also presents the percentage error 

between the calculated Eigen states values for 

finite potential well and the corresponding 

calculated Eigen states values for infinite 

potential well. It’s clear from this results that  

percentage error decreased when the potential 

depth increased. 

 

Table (5) 

Comparison of infinite and Finite Potential 

Wells. 
 

PW 

(A
o
) 

n
th
 

Eigen Value (eV) 

Present Work 

Infinite 

Potential 

PD 

(eV) 

finite 

Potential 
Error% 

4 

1 

2 

3 

4 

2.35344 

9.41376 

21.18097 

37.65506 

25 

1.64623 

6.503752 

14.24314 

23.5291 

30.1 

30.9 

32.8 

37.5 

1 

2 

3 

4 

5 

2.35344 

9.41376 

21.18097 

37.65506 

58.83604 

50 

1.81439 

7.222725 

16.10431 

28.16892 

42.5557 

22.9 

23.3 

23.9 

25.2 

27.7 

1 

2 

3 

4 

5 

6 

7 

8 

2.35344 

9.41376 

21.18097 

37.65506 

58.83604 

84.72389 

115.3186 

150.6203 

125 

1.99215 

7.95804 

17.86378 

31.64409 

49.18309 

70.26498 

94.41186 

119.8218 

15.4 

15.5 

15.6 

16.0 

16.4 

17.0 

18.1 

20.4 

 

Conclusions 

• The iterative method was succeed to solve 

the Schrodinger equation for finite potential 

well. This method is very accurate and 

efficient. 

• More bound state can be found with larger 

potential width, while smaller potential 

width led us to less bound states  

• More bound states can be found with larger 

potential depth while smaller potential depth 

led us to less bound states  

• The number of energy of the n
th

 state is less 

than the infinite potential well. This means 

inside finite potential well type of potentials 

the number of quantum states is finite 

• The percentage error decreased between the 

calculated Eigen states values for finite 

potential well and the corresponding 

calculated Eigen states values for infinite 

potential well when the potential depth 

increased. 
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