Journal of Al-Nahrain University Vol.19 (3), September, 2016, pp.138-147 Science

Pattern Recognition Using Particle Swarm Optimization with Proposed a New
Conjugate Gradient Parameter in Unconstrained Optimization

Ban Ahmed Mitras™ and Suhaib Abdul-Jabbar™
“Department of Intelligent Techniques & Operation Research, College of Computer Sciences and
Mathematics, University of Mosul.
“Department of Computer, University of Mosul Teacher/College of Education for pure science.
E-mail: dr.ban_mitras@yahoo.com.
E-mail: suhayb1975@yahoo.com.

Abstract

In this paper, we present modified conjugancy coefficient for the conjugate gradient method.
This modification using the extention Dai and Yuan Method to solve non-linear programming
problems. The algorithm of particle swarm optimization (PSO) is applied in this work, to
coefficients extracted by features extraction techniques. The sufficient descent and the global
convergence properties for the proposed algorithm are proved. The numerical results of our finding
for the large scale optimization problem are very encouraging comparison with standard methods
The experimental results showed that PSO can generate excellent recognition results with the
minimal set of selected features. Finally, the algorithm PSO based approaches are proposed and the
influence of PSO parameters on the performance is evaluated.

Keywords: Particle Swarm Optimization, Pattern recognition, conjugate gradient, conjugancy
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1. Introduction r
: N . (HS) _ Yk Gkt i

In unconstrained optimization, Minimizing B = yId, (Hestenese and Stiefel[l]) ............ (4)
on an objective function will done depends on o' g
real variables with no restrictions on the values () = 215k (Fletcher and Reeves[2]) ....... 5)
of these variables. The unconstrained ?kgk
optimization problem is: B = ykTgm (Polak — Ribiere [3]and Polyak [4])
MIin (X)X ER", wooeeeeeeeereeseeeeseessseessenens 1) 9 9 ©

where fiR" >R is a continuously g o .d. ........... 5 ..............
differentiable function, bounded from below. < gid, (Conjugate descent [S]) ........ (7)
A nonlinear conjugate gradient method . Vg _
generates a sequence {x, },k is integer number, ) )=—kT—dk”(|—'U&nd Stoery [6]) ..o, 8)

k ~k
k>0. Starting from an initial point x,, the on 0.0
DY) __ k+1 I k+1 H

value of x, calculate by the following s, (DaiandYuan [7]) .............. ©)
equation:

Where d,=-9,, the value of p is

Xet =X A0, oo, (@) determine according to the algorithm of
Conjugate Gradient (CG), and its known as a

where the positive step size A4, >0 is . .
P P k conjugate gradient parameter, S, = X, ; — X,

obtained by a line search, and the directions

d, are generated as: andg, =Vf(x)=f'(x), consider || is the
Euclidean norm andy,=9.,,-9.. The
dk+1 = _gk+1 + ﬁkdk e esereessrrrearsrrererrrrannas (3) termination Conditions for the Conjugate

where d. is a descent search direction and gradient line search are often based on some
K _ _ version of the Wolfe conditions. The standard
O<p<o<l, where g  is defined by one of Wolfe conditions: [8][9]

the following formulas: f(x +4d,)-F(x)<p407d,, oo, (10)
g(x +A4d, ) d, >097d,, worreerennn, (11)
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2. Particle Swarm Optimization Algorithm

The Particle Swarm Optimization (PSO)
algorithm was originally designed by Kennedy
and Eberhart in 1995. PSO is a population-
based searching method which imitates the
social behavior of bird flocks or fish schools.
The population and the individuals are called a
“swarm” and “particles”, respectively. Each
particle moves in the swarm with a velocity
that is adjusted according to its own flying
experience and retains the best position it has
ever encountered in memory. The best local
and global positions ever encountered by all
particles of the swarm are also communicated
to all other particles. The advantages of PSO
are that there is neither mutation calculation
nor overlapping. The popular form of particle
swarm optimizer is defined in the following
equations and in the flow chart in Fig.(1) show
New PSO Flow Chart with new conjugate
gradient parameter[10][11][12].

Vi (K +1) =WV (k)+ Clrl(pbid (K) = X4 (k))
+C,h (gbid (k) — Xig (k))

.......... (12)
Xy (K +1) = X, (K) +V, (K +1) wovvireiiieiiceeine, (13)
Where:
V,,: is the velocity of particle i along
dimension d.

X4 - 1S the position of particle i in dimension d.
cl: is a weight applied to the cognitive

learning portion.
c2: is a similar weight applied to the influence
of the social learning portion.
r2: are separately generated random
numbers in the range of zero and one.
w: is the inertia weight.

(Z(yJ - Xij)2)1/3

=

rl,

cost function is

n

In 2005 Mahamed used (PSO) in Pattern
Recognition and Image Processing.

Konstantinos and Michael used Particle
Swarm Optimization Method for Constrained
Optimization Problems [11]

In 2013 MAJIDA used (PSO) in
Handwritten Characters Recognition [10].
In 2011 Parvinder S. Sandhu, Shalini

Chhabra used (PSO) with Conjugate Gradient
Algorithms.
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3. Modified PSO Algorithm

The modified PSO Algorithm is the same
PSO algorithm but the change is normalize the
Initialization the best by conjugate gradient
Algorithm. The new PSO Flow Chart with
new conjugate gradient parameter.

@

[ The Initialzzation the randam place and velocity of particles vectors ]

I

[ The Initialization the best local and global places. ]

Proposed conjugate gradient
Algorithm

}
_,{ The evaluation of particles vectors ]
]

[ Update particle velocaty and place ]

Fig.(1): Modified PSO Flow Chart with new
conjugate gradient parameter.

4. Extension Dai and Yuan Method

By using extended of Dai and Yuan (DY)
method they need to find new beta that
produces a descent search direction .this
requires that [13][14]:

i + lBk+lg;<r+1dk < O

T —
gk+1d k+l _H O

Letting 7,,, be a positive parameter, then
define

2
Hngrl
B e 15
‘ Tk+l ( )
Equation (14) is equivalent to
T
LTI o Y o S (16)
Taking the positivity of 7., into

consideration, they have
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T >MaX{GT,0,.0) o (17)  Substitute X.,=X, +S, into (20), then
) . . o obtain:
Therefore, if condition (14) is satisfied for
all k, the conjugate gradient method with _1 T T
equation (15), they can get various kinds of fua = 2()(k 8 Al Hs)+b (X +s ) +e
conjugate gradient methods by choosing 1 1
_ o _ ==X Ax, +=5, As, +b'x, +b's, +c
various 7, , where T, satisfying equation. 2 2
(17) and prove global convergence of the fo=f + 1 SAs +b's, (21)
proposed method. We note that the Wolfe 2
cordltlon in equation (11) guarantees From Taylor series b=g then:
d, ¥, >0 and that .
dkTyk = dkTgk+1 _dkTgk > dkTgk+1 fk+1 = fk +§SkT Ask + (gk)T S — g:Sk
This implies that —f +%s[ As,
de Y, > Maxi9e, 8,05 i, 18
N { o } (18) Since AS, =0,,; —0J,, then
: T
By setting 7 = dk Y, formula (15) reduce ; 1
: - =f -f +=s -0,)-=0,
to this DY method as: 93 = T hea F 35 (9. ~90) 2 S
1
oy Hgk+1 ’ = fk - fk+1 +Eslgk+1
Ty
Y Multiplying both sides by 2
It follows from (3) and (15) that
(3) and (15) — 0SS =2(f, = f ) +S. 0 v (22)
9eulis = Hgm +Bea9iad, It follows from Perry's conjugacy conditions
= Tk+116k+1 +lBk+lgk+1 K d|<T+1yk = —g:ﬂ
T
=(-Ta + 9 ) Bia —g,s, =2(f —f.)—d..y

The above relation can be rewritten as:

T
gk+1d k+1
T

—Ta T gk+1dk

ﬂkﬂ =

Recall that if put °% —

reduces to the DY method.

k' this method

5. The proposed Conjugancy Coefficient
Consider the following quadratic model as:

—x "TAx+b'x+c

f(x)=
Where AeR™ is a symmetric positive

definite matrix, be R"andc € R. Then

Y = Ok — Ok :Ask'

f % X:+1 AXk+1 + bT Xk+1 + C

k+1 =
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From eq.(3) and now assume that

||gk+1
ﬂk k dT yk
Then get
- g:Sk =2( fk - fk+1) _(_gk+1 + kDde )T Yi
.................................. (23)
2
g +1 T
g,s _Z(f - fk+1) ( O ” kT dk) Y
d. Y,
................................. (24)
Additionally, from equation. (15) that is
5 la..
fer equation.(24) imply that:
T The T
—0Sc = 2( fk - fk+1)_(_gk+1 + 'BkT < dk) Yi
k k



T
- gll—sk = 2( fk - fk+1) + glllyk _@d;yk
d.y,
- g:Sk = 2( fk - fk+1) + g:uyk _IBka+l
Which yields:

ver _ QY T 2(F = f.) +0u8,
kL
2-k+1

Since 7,,, >0 then we suppose that:

If we set 7, = A9, +@-A)d]y, then:

ngyk +2( fk B fk+1) + g;—sk
Ao +@-A)dly,

New __
kel T

6. Outline of The New Extended
CG-Method.

Step 1: Given % €R
of the algorithm

Step 2: Set k=1; b =G
X = Xy +ﬂ’kdk -ﬂ“k

- (6>0); (k) is an index

Step 3: Set
Wolfe Condition.

is satisfy

T 2
Step 4: If Powell restarting, 9 9« > 02 o ,

satisfied then set:

— New
d k+1 — gk+1 + dk

“Ois glse set Y
New
B is defined in (25), go to Step 2.

Step 5: If Juall <€
Step 3.

, stop else set k=k+1 go to

7. The Convergence Analysis

7.1 Theoretical Properties for the New CG-
Method.
In this section, the convergence behavior on

the B method with exact line searches are
explain.  Hence, the following basic
assumptions on the objective function is
depend to find modify CG-Method.
Assumption (1) [15]

f is bounded below in the level set
L., ={xeR |f(x)s f(xo)}; in some
neighborhood U of the level set = f IS

continuously differentiable and its gradient Vi
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is Lipschitz continuous in the level set =
namely, there exists a constant L> 0 such that:

IVE ()= VE(y)|< L|x-y| forallxy e L,

7.2 Sufficient Descent Property:

In this section will show that the proposed
algorithm which defined in equations (26) and
(3) satisfy the sufficient descent property
which satisfy the convergence property.

Theorem (1):

The search direction d, that generated by

the proposed algorithm of modified CG satisfy
the descent property for all k, when the step
size A, satisfied the Wolfe conditions (10),

(11).

Proof:

By use the indication to prove the descent
property, for k =0,
dy =—g, = dg g, =9,/ <0, after that then

proved the theorem is true for k=0, now
assume that

[scl <7 geall<y  and fg,f <72
assume that the theorem is true for any k i.e.
d/g, <0 or s;g, <0 since s, =Ad,,
now will prove that the theorem is true for
k +1 then:

and

dk+1 = _gk+l ﬂ(NeW)d
i.e.
dk+l gk+1

G T 2(F = f) + 98,

Ao +a-ndly, ... 28)

gk+l k+1 Hgk+l

+ gk+lyk + 2( fk — fk+1) + glsk

k+1™"k

g +@-2dy,

T
fk+l) + gk Sk T
k+1™k

2 _ g;—ﬂyk +2(fk B
o] +@-2dy,

T
gk+1dk+1 + | gk+1
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2
Ao | +@-2)dly,

n 2(fk_fk+1)g-kr+1dk glsk-g:udk
Ao +@-nd7y, Ao, +a-2)dy,

gl-+1dk+1 +||gk+1||2 =

Using Wolfe condition then get:
< g:Ayk'gllek —2pﬂ,.g:dk ggﬂdk
A +@-2dly, Ao +@-2dly,

_0:5,.09,0,
o] +@-2)4d!y,

T 1 2 2

| =2l )
By using the relation ( )
< 9ea¥e9ed,

o] +@-ad]y,

2oi{ 30 o [ 3o 1o

.| +@-2dy,

OeaYe - Grad,
MMH +(@1—-A)d,y,

gk+1

g k+ld k+1 |

2
By divide equation (30) on gl
2
g:—+1dk+1 +||gk+1|| < g;ﬂyk'g:ﬂdk

0.  Glof +a-2d vl
OraGy +] 90 Or.Y, 9.0,
lo.l” @Glad +dly)lgel
e Vid, 9L,
[ — N WA
.................................. (31)
0radea ol _  Ivdlged  lgealle]
locd Ao +|d vl o
mﬂkﬂ+mﬂl Vgl loeld.]
o™ Ao +Hdllvd Noedl
.................................. (32)
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2 - 2
|9, Ao+ e[l
................................. (33)
”gk 1”2 . < /1||gk”2 +HdkH”yk” — 5 >1
gk 1d + gk+1 ”yk ””dk”
................................. (34)
g;—+ldk+l+| Qi 2 < 1
| gk+l 2 5
RS L (o |
g gl (35)
; 1 2
Oy < _(1_g)||gk+1” ............................. (36)
gt
Let °=a 5)
Then
gk+l ka1 = CHgk+1H ............................... (37)

7.3 Global Convergence Property:
Lemma 1: [16]

Let assumptions (i) and (ii) hold and
consider any conjugate gradient method (2)
and (3), where dx is a descent direction and A,

is obtained by the strong Wolfe line search. If

1
7 T 00 ittt (38)
o [
Then
lim inf”gk”:O .............................................. (39)
k—o0

For uniformly convex functions which
satisfy the above assumptions, the norm of
dk+1 given by equation (28) can prove bounded
above. Assume that the function f is a
uniformly convex function, i.e. there exists a

constant z >0 such that forall X,y €S,

(900 -9y (x=y) = x|,

Theorem 2: [17]
Suppose that the assumptions (i) and (ii)

hold. Consider the algorithm (2), (26). If |s,||



tends to zero and there exists nonnegative
constants 71 and 72 such that:

lo." = sl

And f is a uniformly convex function, then

liminf||g, <0

k —o0

Proof:
From

g:ﬂyk + 2( fk B fk+1) + g:Sk
g, +@-A)d]y,

New __
k1 T

From equation. (43) Then get:

g:ﬂyk +2( fk — fk+1)+ g:Sk

| Ao ra-ady, |

‘gku Y« ||+2|( fk - fk+1) +||gk||||sk||
Ao+ @- 2.y,

New
k+1

<

But [y, ]| < LJs, |.. Then

gk+1

Lfs.|+2/(f, - f..)

s
S
RN
Lyn+ 2|( fo—fs)

y) —zlﬁj
s, |+ @-2) L

+12n

.................................. (45)
Let
A= (fk - fk+1)
|ﬁkN| < Ly +2A+n2n (46)
/177177||sk||+(1—/1)”8/1k” Ly
Hence,
R B Y — @)
<7+ —BEERTI o) (a8

/177177||Sk|| + (1—1)”2" Ly
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ot + 0=

1
Y=
ld..I

k=1

-

8. Results and Discussion

The practical side includes some numerical
results which are obtained with the
implementation of new algorithm (on asset of
unconstrained optimization).

Large scale unconstrained optimization
problems are selected (generalized form).

For each test function, n=1000, 10000 is the
number of variable consider as numerical
experiment. By using the standard wolfe
conditions (4) and (5) with stopping criteria is
|9l <207,

All the computations in this part are carried
out by using Fortran 90 Language.

Method and FR method (7) are compared in
this research. The preliminary numerical
results of tests are show in Tables (1) and (2).
The first column is “test fun” (name of test
function), the second column “NOI” denoted
the number of iterations, the third column
“NOF” denoted the number of calculated
functions and the fourth column “MIN”
denoted the minimum values.

1 Zl:oo

2
Ly +2A+n2n
2,77177+(17/”L)%
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Table (1)
Comparison between standard method and modified method with respect to
(NOI and NOF) for n = 1000.

Science

Fletcher - Reeves Dai- Yuan modified method
Test Functions
NOI NOF MIN NOI NOF MIN NOI NOF MIN
(Egt‘ﬁ‘égd Rosenbrock SROSENBR | g | fail fail fail | fail fail 62 | 123 | 632515
Extended White & Holst fail fail fail fail fail fail 79 152 1.20E-15
Extended Beale 1108 | 1154 1.04E-12 1126 | 1173 7.18E-13 31 56 8.84E-14
Penalty 24 61 8.83E+02 24 60 8.83E+02 13 37 8.83E+02
Generalized Tridiagonal 65 776 9.97E+02 131 3005 2.00E+03 49 731 9.97E+02
Generalized Tridiagonal 2 233 280 9.58E-01 233 280 9.58E-01 54 88 1.16E-14
Diagonal 641 677 3.69E-13 661 698 1.71E-13 17 32 2.00E-16
Extended Himmelblau 30 61 8.22E-15 30 61 8.29E-15 18 33 5.89E-16
Extended Maratos fail fail fail fail fail fail 69 140 -5.00E+02
Extended Wood WOODS (CUTE) fail fail fail fail fail fail 282 525 1.21E-13
Extended Hiebert fail fail fail fail fail fail 99 217 1.57E-12
Extended Quadratic Penalty QP2 fail fail fail fail fail fail 50 104 6.69E-15
ARWHEAD (CUTE) 1546 2433 0.00E+00 1540 2516 0.00E+00 42 426 0.00E+00
NONDIA (CUTE) fail fail fail fail fail fail 25 47 3.44E-17
DQDRTIC (CUTE) 1589 1632 1.22E-13 1596 1639 1.08E-13 171 285 2.21E-13
Broyden Tridiagonal 83 127 1.36E-14 83 127 1.41E-14 37 62 1.48E-14
LIARWHD (CUTE) fail fail fail fail fail fail 57 107 6.22E-15
DENSCHNA (CUTE) 23 37 8.86E-14 25 38 1.28E-13 15 27 9.09E-15
DENSCHNC (CUTE) 132 170 8.79E-14 132 170 8.82E-14 35 70 5.12E-14
Extended Block-Diagonal BD2 130 166 1.93E-13 132 169 1.21E-13 35 70 1.72E-14
Generalized quartic GQ1 10 24 1.30E-13 12 28 3.66E-14 9 22 1.38E-15
Generalized quartic GQ2 118 153 1.22E-13 117 152 2.23E-13 45 71 2.65E-13
FLETCHCR (CUTE) 32 62 2.09E-16 32 62 2.12E-16 32 56 1.12E-16
HIMMELBH (CUTE) 21 43 -5.00E+02 21 43 -5.00E+02 -5.00E+02

As shown in Table (1) a comparison
between standard method (Fletcher and
Reeves, Daiand Yuan) and modified method
with respect to (NOI and NOF) for n=1000,
The results are obtained in modified method
are better than the results in standard method
(Fletcher and Reeves, Daiand Yuan).
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Test Functions

Extended Rosenbrock SROSENBR

(CUTE)

Table (2)
Comparison between standard method and modified method with respect to (NOI and NOF) for
n = 10000.

Fletcher - Reeves

Dai- Yuan

Ban Ahmed Mitras

modified method

fail

fail

4.37E-17

Extended White & Holst

fail

fail

1.61E-16

Extended Beale

1.15E-12

6.06E-13

1.02E-12

Penalty

9.45E+03

9.45E+03

9.45E+03

Generalized Tridiagonal

1.00E+04

3.39E-05

1.00E+04

Generalized Tridiagonal 2

3.41E+00

3.41E+00

9.58E-01

Diagonal

3.11E-13

3.30E-13

7.59E-15

Extended Himmelblau

6.87E-15

6.93E-15

1.46E-16

Extended Maratos

fail

fail

-5.00E+03

Extended Wood WOODS (CUTE)

fail

fail

1.65E-13

Extended Hiebert

fail

fail

4.70E-05

Extended Quadratic Penalty QP2

fail

fail

4.15E-14

ARWHEAD (CUTE)

fail

fail

0.00E+00

NONDIA (CUTE)

fail

fail

1.38E-13

DQDRTIC (CUTE)

1.17E-13

1.03E-13

1.53E-13

Broyden Tridiagonal

8.74E-01

8.74E-01

3.97E-01

LIARWHD (CUTE)

fail

fail

6.83E-19

DENSCHNA (CUTE)

2.02E-13

2.08E-13

6.66E-16

DENSCHNC (CUTE)

7.35E-14

1.33E-13

1.86E-14

Extended Block-Diagonal BD2

9.80E-14

1.64E-13

1.11E-13

Generalized quartic GQ1

1.12E-14

1.37E-14

4.78E-15

Generalized quartic GQ2

1.67E-13

1.45E-13

1.60E-13

FLETCHCR (CUTE)

4.96E+01

4.96E+01

4.96E+01

HIMMELBH (CUTE)

-5.00E+03

-5.00E+03

-5.00E+03

Table (2) shows a comparison between
standard method (Fletcher and Reeves, Daiand
Yuan) and modified method with respect to
(NOI and NOF) for n=10000, The results are
obtained in modified method are better than
the results in standard method (Fletcher and
Reeves, Daiand Yuan).

Table (3)
Result of PSO with new CG recognized ear
image of database.

Number No of
of subject | features

Recognized | Recognition
ear image rate (%

120 6 120 100%
140 7 140 100%
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Table (4)
Result of PSO with new CG recognized ear
image of test.

Number of | No of | Recognized | Recognition
subject features | ear image rate (%)

50 6 33
50 7 35

Table (3) show two number of subject 18
person, Table (3) cluster subject 120(6) is
shows the (6) features data ear image for
person and 140(7) shows the (7) features data
ear image for person. We shows the
recognized ear image with the recognition
rate is (100%). While Table (4) explain
recognized ear image (33) for 50(6) and
(35) for 50(7) with unrecognized ear image
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17 and 15 respectively with recognized ear
rate 66% and 70% respectively.

PSO based feature selection algorithm
found to generate excellent recognition result
with the minimal set of selected features.

9. Conclusion

PSO is computation paradigm based on the
idea of collaboration behavior inspired by the
social behavior of bird flocking or fish
schooling. Feature selection algorithm is
utilized to search the feature space for the
optimal feature subset where features are
carefully selected to a well defined in terms of
maximizing the class separation. The
application of the proposed clustering
algorithm to the problem of segmentation of
images is investigated. A clustering algorithm
with minimal user in deference is developed in
this work.

The numerical results of our finding of
standard method and modified method are
very encouraging by using the proposed
algorithm. Through the results and minimum
errors for the large scale optimization problem.
These out come of results is to show that
modified method are more effective than the
standard method. And the accuracy of the
modified method gives a good optimization
problem.
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