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Abstract

The purpose of this paper is to present some results concerning the trace of symmetric (2, a)-
Biderivation and symmetric left @-Bimultiplier on prime rings. In these results we investigate
commutativity of rings, further some certain identities satisfying by symmetric (@, @)-Biderivation
and biadditive mappings that make these mapping @-commuting.
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1. Introduction

Throughout  this  discussion,  unless
otherwise mentioned R will represent an
associative prime ring with center Z(R) and «,
T € Aut(R). For x,y €R, the symbol [x, y] will
denote the commutator xy — yx. A ring R is
called 2-torsion free, if 2x=0, x €R, implies
x=0. Recall that R is prime if for any a,b €R,
aRb ={0} implies a=0 or b=0 and semiprime
if for any a €R, aRa ={0} implies a=0.

In [1], T. K. Lee introduce the notion of &~
commuting mappings in the following way: A
mapping ¢: R — R is said to be a-centralizing
on R if [p(x), &(X)] € Z(R), for all x€ R. In
special case when [¢(x), a(x)] =0, for all x €R,
the mapping ¢ is called a~commuting. If ¢(X)
2(x) + a(x) o(x)= 0 holds for all x €U, then ¢
is said to be skew @-commuting

A mapping B: RxR— R is called symmetric
if B(x, y) = B(y, x) for all pairs x,y € R. A
mapping f: R — R defined by f(x) = B(X, x),
where B is a symmetric mapping will be called
the trace of B. It obvious that in case B is a
symmetric mapping which is also biadditive
(i.e., additive in both arguments), the trace of
B satisfies f(x+y)= f(x) +2 B(x,y)+ f(y), for all
X,y €R. The notion of symmetric Biderivation
was introduced by Maksa in [2]. A symmetric
biadditive mapping D(., .): RXxR— R is called
symmetric Biderivation if D(xy, z)=D(x, z) y +
xD(y, z) holds all x,y,z €R. If D satisfies that
D(x?, z) =D(x, z) x + xD(x, z) for all x,y €R,
then D is said to be symmetric Jordan
Biderivation. In 2007 Y. Ceven, and M. A.
Oztiirk in [3] introduce the concept of
symmetric (@, z)-Biderivation as follows: A
symmetric biadditive mappings F(.,.):
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RXR—R is called said to be a symmetric
(@, 7)-Biderivation if F(xy, z) = F(X, 2) a(y)+
7(x) F(y, z), for all x,y,z € R. Obviously, in this
case the relation F(x,yz) = F(X, y)a(2)+ z(y)
F(x, y) is also satisfied for all x,y,z€ R. M.
Ashraf in 2010 [4], introduced the notion of
symmetric generalized (@, 1)-Biderivation
as follows: A  symmetric biadditive
mapping G(.,.);RXR —R is symmetric
generalized (a,7)-Biderivation if there exist
symmetric (@, 2)-Biderivation D such that
G(xz, ¥)=G(x, y) (z) + 7(x)D(z, y), for all x, v,
z €R. In case @ = r the mappings F and G are
said to be a symmetric («, @)-Biderivation and
symmetric generalized (@, «)-Biderivation
respectively. A Symmetric biadditive mapping
T: RXR—R is called a Symmetric left (right)
a-Bimultiplier where is a homomorphism of R
if:

Tz, y) =T y) @) (T(xz,y) = ax) T(z,Y)),
holds for all x,y,z €R.

The mapping T is called a Symmetric
a-Bimultiplier if it is both Symmetric left and
right @- Bimultiplier (see [5]).

Over the last five decades, many authors
[6, 7, 8] present several results concerning the
relationship between the commutativity of
prime and semiprime rings and the existence
of specific types of a nonzero symmetric
generalized (&, 2)-Biderivation and affiliated
mappings. In this paper many results of this
kind was presented. We shall also briefly
discuses of the notion of a-commuting
mappings.



2. Some Preliminaries

We shall do a great of calculations with
commutators, routinely using the following
basic identities (see [2]):

[xy,z]=[x,zly +xly, z] &
[x, yz]=[x,ylz +y [x, ], for all x,y,z € R.

We state the following well-known results
which will be useful in the sequel.

Lemma (2.1): [9]

Let R be a prime ring of characteristic
different from 2 and 7 be a nonzero ideal of R.
let a, b be fixed elements of R. if axb+bxa=0
is fulfilled for all x € 7, then either a=0 or
b=0.

Lemma (2.2): [10]

Let R be semiprime ring, 7 a right ideal of
R. If 7 is a commutative as a ring, then
J cZ(R).In addition if R is a prime, then R
must be commutative.

Lemma (2.3): [11]

Let R be a prime ring, and 7 be a nonzero
left ideal of R. If a (o, 7)-Biderivation
D: RxR—R satisfies that D(7, J7) =0, then
D =0.

Also, we need to prove the following
lemma.

Lemma (2.4):

Let U be a nonzero left ideal in a 2-torsion
free prime ring R. If a symmetric («, a)-
Biderivation F: RxR—-R has a zero Trace on
U, then R is commutative or F is zero on R.

Proof:
Let f be the Trace of F, then
f(u)=0, for all u €U.

The linearization of above relation leads
because of the 2-torsionity free of R to:

F(u, w)=0, for all u, w €U.
Consequently, for any r,s €R, we have:
F(ru, sw)=0, forall u, w €U. .........cccecuen. 1)

We shall compute (1) in two different ways
to get:
F(s, r)(w)a(u)=0, foru, w eU and r;s eR. .(2)
F(s, r)(u)a(w)=0, foru, w eUand r;s eR. . (3)
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Subtracting (2) from (3) implies that:
F(s, N[a(u), a(w)]=0, for u,w €U, rseR. .. (4)

Putting st instead of s in (4), using (4), we
arrive at:

F(s, n(t)a ([u, w])=0, for u, w €U, r,s;t €R.

By primeness of R yields that either
F(s, r) =0, for all r,s €R, that is F is zero on
R or @ ([u, w]) =0 and consequently [u, w]=0,
for all u, w €U.

If [uw]=0, for all u,w €U then an
application of Lemma (2.2) yields that R is
commutative.

3. The Main Results

We start our main results with following
theorem which looking for the conditions that
forces the prime ring R to be commutative.

Theorem (3.1):

Let R be a 2-torsion free prime ring and
D:RXR—R be a nonzero Symmetric Jordan
Biderivation such that xy- yd(x) = yx — xd(y),
for all x,y €R, where d is the Trace of D, then
R is commutative.

Proof:
Form our hypothesis, we see:
[X, y] = yd(x) - xd(y), for all X,y €R. ............ (@)

The linearization of above relation with
respect x, we get:

[X, yI+ [z, y] = yd(x) + yd(z) +2yD(X, z) - xd(y)
- zd(y), for all x,y,z €R.

In view of (1), and 2-torsionity free of R,
the above relation reduces to:

yD(X, z) =0, for all X,y,z €R. ......cccvevennenne. 2
Now, the substitution x? for x leads to:

yD(x, 2)x + yxD(x, 2)=0, for all x,y,z €R.
According to (2), we have:

yxD(x, 2)=0, forall x,y,z €R. .....c..ccovernn.. 3)

Also, the left multiplication of (2) by x, we
get:

xyD(x, z) =0, for all x,y,z €ER. .......cecveurenen. 4

Combining (3) and (4), implies to:
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[x, y] D(x, z) =0, for all x,y,z €R. ................. (5)
Replacing y by yr in (5), using (5), leads to:
[x, y] r D(x, z) =0, for all x,y,r,z €R.
Now, define

K={x €R: D(x, z) =0, for all z eR}
H={x €R: [x, y] =0, for all y eR}

Then K and H are two disjoint sub group
of R satisfies that there union equal to R,
which contradicts Brauer's trick. Since D is a
nonzero Jordan Biderivation, we conclude
that:

[x, y] =0, for all x,y €R.

Hence R is a commutative ring.

Theorem (3.2):

Let R be a 2-torsion free ring and «
be an automorphism on R. if a symmetric
(@,@)-Biderivation F: RxR—R satisfies
(xy)-f(xy) =a(yx)- f(yx), for all x,y €R, where f
is the Trace of F, then R is commutative.

Proof:
For any x,y €R, we have:

[a(x), a(y)]=f(xy) - f(yx)
= [a(x)?, f()] + [f(x), @)’ + 24(x)
F(X, y) a(y)- 2a(y) F(X, Y) @(X). eovverennnee. (1)

The substitution x+y for x in (1), we get:

[2(x), a(¥)] = [(x)?, T()] + [a(X)aly), f(Y)] +
[ay)a(x), ()] +[f(x), a(y)’]+ 2[F(x, y),2(y)’]
+H2a()F(x, )aly)+2a(x) f(y)aly)- 2aly) F(x,
y) a(X)- 2a(y) f(y)a(x), for all x,y €R.

In view of (1), the above relation reduces
to:

[a()(y), fY)] +[ay)ax), W]+ 2[F(K, ),
ay)’] + 2a(x) f(y)aly)- 2a(y) f(y)a(x)= 0.

Again, taking x+y instead of x in (2) and
using (2) imply that:

2([a(x)%, T()] +[f(x), ay)’] +2a(X)F(x, Y)a(y)-
22(y)F(X, y)a(x))=0, for all x,y €R.

Using the 2-torsionity free of R and relation
(1), we arrive at:

[@(X), a(Y)]= « ([x, y])=0, for all x,y €R.
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Using the fact that « is an automorphism on
R, we see:

[x, y]=0, for all x,y €R.

Hence R is commutative.
In similar manner we can prove the
following theorem.

Theorem (3.3):

Let R be a 2-torsion free ring and « be an
automorphism on R. if a symmetric (@, a)-
Biderivation F: RXR—R satisfies (xy)+ f(xy) =
a(yx)+ f(yx), for all x,y €R, where f is the
Trace of F, then R is a commutative ring.

Theorem (3.4):

Let R be a non-commutative 2-torsion free
prime ring and F: RXR—R be a symmetric
(@, @)-Biderivation. If the Trace f of F is skew
a-commuting on a nonzero ideal U of R, then
R is a commutative ring or F is zero on R.

Proof:
According to our hypothesis, we have:

f(X)(x) + @(x) f(x)= 0, for all x EU. .......... (1)

The linearization of (1) with respect x, we
get:

fX) A w) + f(w)a(X) +2F (X, w)a(X) +2F (X, w)
(w) + a¥f(w) +22()F(X w) +Hw)i(x) +
2(w)F(x, w) =0, forall x, w €U. ................ 2

Putting 2x instead of x imply that:

2f(X) e(w) + 4f(w) a(X)+ 4F (X, w)(X)+8F (X, w)
a(w)+aa(X)f(w) +4a(X)F(x, w)+ 2a(w)i(x) +
8(w)F(x, w) =0, forall X, w €U. ................ (3)

Comparing (2) with (3), we arrive because
of the 2-torsinity free of R at:

f(X)a(w) +a(w)f(x) +2F(X, w)a(x)
+22(X)F(X, ) = 0, for all X, @ €EU. ... (4)

Replacing w by xw in (4) leads to:

f(X) (X) A w)+a(X) A w)F(x)+2f(x) o w ) #(X)
+22(X)F (X, w)2(X)+22(X)f(X) A w)+22(x?)

F(x, w) =0, for all x, w €U.

Equivalently



AX)( f(X)aA(w) +Aw)f(x)+2F(X, w)a(x)*+ 2a(x)
F(X, w)) + (F() a(x) +a(x)f(x)) dw)
+2 f(x) (0)(X)=0, for all X, @ EU. ...rrvvvr... (5)

In view of (1) and (4), the relation (5)
reduces because of the 2-torsinity free of R to:

f(X)(w)a(x)= 0, for all X, w €U.
The substitution rw for w in (4), we see:
f(x) a(r)a(w)a(x)= 0, for all X, w €U, r €R.

Recall that (U) is a nonzero ideal of R, also
by the primeness of R we can get some woeU
such  that (wol)#{0}, moreover, the
automorphisms. It y of & leads to wol#{0}. So
there exist xo €U satisfies that woxo #0.

Now, putting wo for w and Xo for x in (6)
gives:

f(Xo) a(r)a(woxo)= 0, for some xo, wo €U and
all r eR.

Using the primeness of R, since (woXo) #0,
we conclude that f(xo)= 0.

Therefore

f(x)= 0, for all x satisfies that wox #0. ........ (7)

Our next task is to prove that f(x)= 0, for all
X eU.

Choose x €U such that wox=0, then

wo(X+ Xo) #0 and wo(X - Xo) #0, then an
application of (7), we have:

0=f (x + Xo)= f(X)+ f(X0)+2F(X, Xo0)

= f(X) + 2F(X, X0) vervrererrereieirienieeinsieninaeens (8)
0=f (X - Xo0) = f(X) - f(X0)- 2F(X, Xo)
= f(X) = 2F (X, X0) eevereerieiierieiee e 9)

Combining (8) with (9), we conclude
because of the 2-torsinity free of R that f(x)=0.

Hence f(x)=0, for all xe€U. So an
application of Lemma (2.4) we get the
assertion of the theorem.

Theorem (3.5):

Let R be a prime ring of characteristic
different from 2 and 3 and U= {0} be an ideal
of R. if Di;, D2:RXR—R are nonzero
symmetric (&, @)-Biderivations with trace fi, f2
respectively satisfies that f1(u) f2(u)=0 for all u
€U, then either f2 is @~<commuting on U or R is
a commutative ring.

127

Eqgbal Jabur Harjan

Proof:
By hypothesis, we have:
fi(u) f2(u)=0, for all u,w €U. .....cccveverne. )

The linearization of (1) leads to:

fiu) fow)+ fu(w) f2(u)+2f1(U)D2(u, w) +
2f1(w) D2(u, w)+2D1(u, w) f2(w)+2D1(u, w)
f2(u)+ 4D1(u, w) D2(u, w) =0, for all u,w €U.

Putting -u instead of u in above relation
gives:

f1(u) f2(w)+ f1(w) f2(u)+ 4D1(u, w) D2(u, w)
=0, forall u,w EU. ..ccceeiiieee, (2)

The linearization of (1) with respect to w,
we find:

fi(u) f2(w)+ fi(u) f2(2)+ 2f1(u)D2(w, z)+f1(w)
fa(u)+ f1(z) f2(u)+ 2D1(w, z) f2(u)+4D1(u, w)
D2(u, w)+4D1(u, z)D2(u, w)+4D1(u, w)D2(u,
z) +4D1(u, z) D2(u, 2)=0, for all u,w €U.

According to (2), the last relation reduces
to:

2f1(u)D2(w, 2)+2D1(w, z) f2(u)+4D1(u, 2)
D2(u, w)+4D1(u, w) D2(u, z) =0, for u,w €U.

Replacing u by w in above relation, we
find:

6f1(w)D2(w, 2)+6D1(w, 2)f2(w)=0. ............. 3)
The substitution zv for z in (3) gives:

fi(w)D2(w, 2)a(V)+ fi(w)a(z)D2(w, V)
+D1(w, z) &(V)f2(w) + &(z)D1(w, V) f2(w)=0.

In view of (3), the above relation can be
written as:

Di(w, J)[a(V), fo(w)]+ [fuw), #2)]D2A(w, V)

=0, for all v,z, w €U.
Putting (2)f1(w) instead of a(z) yields that:
Di(w, Z)[a(v), f2(w)]+[f1(w), 2(2)] fi(w)

D2(w, v) =0, for all v,z, w €U.

The substitution w for v and using (1) leads
to:

Di(w, 2)[w), f2(w)] =0, for all z,w €U.



Journal of Al-Nahrain University

Putting uz for z in (4), using (4) implies
that:

Di(w, u)a(z) [a(w), f2(w)] =0, for all z,uw
eu.

Again, replace z by zr in the last relation
leads to:

Di(w, Wa(2) o) [dw), fw)] =0, for all

Z,u,w €U and r eR.

Now, define

H={w €VU: [ae(w), f2(w)] = 0}
K={w €U: Di(w, u)a(z) =0, for all u, z eU}

Since a group cannot be the set theoretic
union of two it's proper subgroups, hence
either U= or U= XK. If U= H, this leads that
f> is a~commuting on U. Otherwise, U=X,
that is:

Di(w, u) a(z) =0, for all z,u,w €U.

Putting sz instead of z, we find:
Di(w, u)a(s)a(z)=0, for all z,u,w €U and s €R.

By the primeness of R, we have either 2 is
a-commuting on U or:

Di(w, u)a(s)a(z)=0, for all z,u,w €U and s €R.

Since « is an automorphisms, then by the
primeness of R (Recall that (U) is a nonzero
ideal of R), we find that Di(w, u)=0, for all
u,w €U. Consequently by Lemma (2.3) we
conclude that R is commutative.

In similar manner we can prove:

Theorem (3.6):

Let R be a non-commutative prime ring of
characteristic different from 2 and 3 and
U={0} be an ideal of R. if D1, D2: RxR—R
are nonzero symmetric (@, @)-Biderivations
with trace fi, f> respectively satisfies that
fi(u)f2(u)=0 for all u €U, then either f1 is a-
commuting or D3 is a zero mapping on R.

Theorem (3.7):

Let R be a semiprime ring of characteristic
different from 2, 3 and « is an automorphism
on R. if a symmetric left a-Bimultiplier F:
RxR—R satisfies that [[f(x), «(X)], «(X)] is a
central, where f is the Trace of F, then f is a-
commuting on R.
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Proof:
For any x €R, we have:
[[f(X), 2], @X)] EZ(R). wevverrrrrrerersrren (1)

The linearization of (1) leads to:

[[flw), a¥)], aX)]+2[[F(xw), a(x)], aXx)]+
[[f(w), aw)], a(X)]+ 2[[F(X, w), Aw)], a(X)] +
[[fx), a(¥)], @ (w)]+ [[flw), aX)], a(w)]+
2[[F(x, w), a(X)], a(w)] + [[f(X), Aw)], A(w)]+
[[f(x), (w)], &X)] +2[[F(X, w), A(w)],

(w)] €Z(R), forall X, w €ER. .....ccvvevereen 2

The substitution -x for x in (2), then
combining the relation so obtained with (2),
we arrive because of the 2-torsionity free of R
at:

2[[F(x, w), a(X)], a(X)] + [[f(x), a(w)], x)] +
[f(w), adw)], a(X)] + [[f(x), a(X)], Adw)] +
[f(w), a(X)], a(w)] + 2[[F(X, w), a(w)],

(w)] €Z(R), forall X, w €ER. .....ccveevveren 3

Also, putting 2x instead of x in (3), we get:

16[[F(x, w), a(X)], a(X)]+ 8[[f(x), a(w)], a(X)]
+ 2[[f(w), a(w)], a(x)] +8[[f(x), a(X)], a(w)]

+ 2[[f(w), a(X)], Adw)] + 4[[F(X, w), a(w)],
(w)] €Z(R), forall X, w €ER. .....ccveevveren 4

Comparing (4) with (3), leads because of
the 2-torsinity free of R to:

2[[F(x, w), a(X)], @x)] +[[f(x), a(w)], a(x)]+
[[f(x), &(X)], &(w)] €Z(R), for all x, w €R.

Replacing w by x? in (5) and using the
commutator identity, we see:

[[f(x), a(X)], a(X)] a(x)+ aX)[[f(x), a(x)], a(X)]
+ a)I[f(x), a(X)], a(x)]+ [[f(x), a(X)], a(x)]
a(x) + [[f(x), aX)], aX)] ax) + aX)[[f(x),
2(X)], &(xX)] €Z(R), for all x €R.

In view of (1), since R is of characteristic
different from 2 and 3, we can get:

[[f(x), a&(X)], &(X)]a(x) €Z(R), for all x €R.

So for any UER, we have:

WIIX), a(x)], at)]alx) - [[f(x), aX)], a(x)]
2(X)(u)= 0, for all x €R.

According to (1), the above relation can be
written as:



[[f(), @(x)].(01[(u), a(x)]= 0, for x,u €R.
Putting (U)[f(x), «(X)] instead of 2(u) in (6),
using (6), leads to:

[f(x), aX)], a(x)] (u) [[f(x), «x)]. «(x)]= 0,
for all x,u €R.
Using the semiprimeness of R and

automorphismity of &, we conclude that:

[[f(x), @(X)], &(X)]=0, forall x €R. ............. (7)

Now, using a same argument on (7) as used
to get (5) from (1), we can see:

[[f(x), ()], @X)]+ [[f(x), a(X)], (w)] +
2[[F(X, w), @(X)], &(X)] =0, for x, w €R. ..... (8)

Replacing w by vw in (8) gives:

[(@)[f(x), a(v)], a(I+[[f(x), a(w)] a(v),
a(x)] +[[f(x), ax)], a(w)]a(v) +a(w) [[f(X),
a(xX)], a(v)] + 2[[F(x, w) a(v), a(X)], a(x)]=0.

That is for all x,v,w €R, we have:

[(@), a(] [f(), @)+, av)]
a(X)]+[f(x), dw)] [a(v), aX)]+ [[f(X), w)],
a(X)]a(v)+[[f(X), ax)], a(w)]a(v)+a(w)f(X),
a(X)], d(v)]+2[F(x, ), &X)] [a(v), a(X)] +
2F(x,w)[[a(v), (X)), aX)]+ 2[[F(x, w), aX)],
a(X)]a(v) +2[F(x, ), @x)] [a(v), a(X)]=0,

An application of (8), the above relation
reduces to:

[f(x), a(w)] [(v), a(X)]+ [(w), «X)] [f(x), (v)]
+ A[F(xw), aX)] [(v), aX)] +2F(Xx )
[[a(v), a(X)], &(X)] =0, for all x,vr,w €R.

The substitution x for v in (9) imply that:
[(w), a(X)] [f(X), «(x)] =0, for all x,w €R.

Putting f(X)(w) instead of a(w) in (10), then
using (10) gives:
[f(x), &(X)] (w) [f(x), a(X)] =0, for all x,w €R.
The semiprimeness of R leads to:

[f(x), a(x)] =0, for all x,w €R.

Hence f is an a~commuting mapping on R.
We end this paper with the following result
which gives a suitable condition on
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asymmetric generalized (&, @)-Biderivation G:
RxR—-R that makes the ring R is a
commutative.

Theorem (3.8):

Let R be a 2-torision free prime ring and U
be a nonzero ideal of R. if a symmetric
generalized (@, a«)-Biderivation G:RXR—R
with associated (&, @)-Biderivation D satisfies
that G(d(u), v) =0 for all u,v €U where d is the
Trace of D, then D is a zero mapping on R.

Proof:
By hypothesis, we have:

G(d(u), v) =0, forall u,v €U. ........ccccvene. D

Replacing v by vz in above relation implies
that:

G@d(u), Va(2)+ a(v)D(d(u), z) =0, for u,v,z
eu.

According to (1), the above relation reduces
to:

D(d(u), z) =0, forall u,z €U. .......ccceuvennnn. @)

The substitution u+v for u in (2) give:
D(d(u), z)+ D(d(v), z)+ 2D(D(u, v), z) =0, for
all u,v eu.

According to (2), the last relation becomes:
2D(D(u, v), z) =0, for all u,v,z €U. ............. (3)

Putting vw instead of v in (3), we get:

2D(D(u, V)a(w)+ a(v)D(u, w), z) =0, for all
u\Vv,z, w eU.

Equivalently

2D(D(u, V), 2)@ *(w)+24(D(u, V)D(a(w), 2)
+2D(a(V), 2)2(D(u, w)+2a *(v)D(D(u, ), z)
=0, for all u,v,z, w €U.

An application of (3) on above relation
leads to:

D((v), 2) (D (u, w)+ «(D(u, v)) D(«(w), 2)

=0, for all u,v,z, w €EU. ......cceevrviii 4

Replacing v by vk in (4) implies that:
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2D, V)a *KD(dw), 2)+ a *V)«(D(u,
K)D(a(w), )+ @*(v)D(a(k), 2){D(u, w))+
D(a(v), 2)@ (K)#D(u, ») =0, for uv,zk
eu.

In view of (4), the above relation becomes:

2D(u, v))@ *(K)D(a(w), 2)+ D(&(v), 2)@ *(K)
2(D(u, w)) =0, for all u,v,z,k, w €U.

Putting u for z and w for v in above relation,
we find:

2D(u, w))@*(K)D(a(w), u)+ D(a(w), u)z*(K)
2(D(u, w)) =0, for all u,k,w €U.

Recall that (U) is an ideal of R, replace (w)
by w, then an application of Lemma (2.1) on
above  relation  yields  because  of
automorphismity of #and symmetry of D that:

D(u, w) =0, for all u,w €U.

Using Lemma (3.2), we get the requirements
of the theorem. ......ccccevvviiiiiiie |
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