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Abstract  
The proton momentum distributions (PMD) and elastic charge form factors, F(q), of the ground 

state for some even mass nuclei in the 1f-2p shell, such as 56Fe, 62Ni and 68Zn nuclei have been 

calculated in the framework of the Coherent Density Fluctuation Model (CDFM) and expressed in 

terms of the fluctuation function (weight function) (|𝑓(𝑥)|2). The fluctuation function has been 

related to the charge density distribution (CDD) of the nuclei and obtained from the theory and 

experiment. The feature of the long-tail behavior at high momentum region of the proton 

momentum distributions has been determined by both the theoretical and experimental fluctuation 

functions. The observed electron scattering form factors for 56Fe, 62Ni and 68Zn nuclei are in very 

good agreement with the present calculations throughout all values of momentum transfer q. 
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Introduction 
Nuclear size and density distribution are the 

basic quantities that describe the nuclear 

properties [1-3]. The charge densities can give 

us much detailed information on the internal 

structure of nuclei since they are directly 

related to the proton wave functions, which are 

important keys for many calculations in 

nuclear physics. Electron–nucleus scattering is 

known to be one of the powerful tools for 

investigating nuclear charge density 

distributions. Charge density distributions for 

stable nuclei have been well studied with this 

method [4-6]. The electron-nucleus interaction 

is considered [7] by the first Born 

approximation as an exchange of a virtual 

photon. In this case the initial and final 

particles are considered free and can be 

represented by plane waves. The first Born 

approximation is being valid only if 1Z , 

where Z is the atomic number and   is the 

fine structure constant. According to this 

approximation the interaction of the electron 

with the charge distribution of the nucleus is 

considered as an exchange of a virtual photon 

with zero angular momentum along the 

direction of the momentum transfer q; this is 

called "Coulomb or longitudinal scattering". In 

addition to the electron scattering experiments, 

the scattering of ions and particles from nuclei 

has provided along the years invaluable 

information on charge, matter and current on 

stable nuclei and near the stability line. Also, 

experiments on hadron elastic scattering and 

total cross section measurements provided 

information about the nuclear matter density 

distribution. Additionally, from the momentum 

distribution of the fragments from break-up 

reactions the rms nuclear matter radii can be 

determined [8]. 

In coherent density fluctuations model 

(CDFM), which is exemplified by the work of 

Antonov et al. [9,10,11], the local nucleon 

density distribution (NDD) and the nucleon 

momentum distributions (NMD) are simply 

related and expressed in terms of 

experimentally obtainable fluctuation function 

(weight function) |𝑓(𝑥)|2. They [9,10,11] 

studied the NMD of (4He and 16O), 12C and 

(39K, 40Ca and 48Ca) nuclei using weight 

functions |𝑓(𝑥)|2 specified by the two 

parameter Fermi (2PF) NDD [12], the data of 

Reuter et al. [13] and the model independent 

NDD [12], respectively. It is significant to 

remark that all above studies, employed the 

framework of the CDFM, proved a high 

momentum tail in the NMD. Elastic electron 

scattering from 40Ca nucleus was also 

investigated in Ref. [9], where the calculated 

elastic differential cross sections (𝑑σ/𝑑𝛺) are 

in good agreement with those of experimental 

data. 
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Nearly all the CDFM investigations are 

based on the use of weight functions expressed 

in terms of the experimental NDD. In the 

present study, we utilize the CDFM with 

weight functions expressed in terms of 

theoretical CDD. We first try to derive a 

theoretical form for the CDD, applicable 

throughout all fp-shell nuclei, based on the use 

of the single particle harmonic oscillator wave 

function and the occupation numbers of the 

states. The derived form of the CDD is 

employed in determining the theoretical 

weight function |𝑓(𝑥)|2 which is then used in 

the CDFM to study the proton momentum 

distribution (PMD) for some fp-shell nuclei 

with even A, such as, 56Fe, 62Ni and 68Zn 

nuclei. It is found that the theoretical weight 

function |𝑓(𝑥)|2 based on the derived CDD is 

capable to give information about the PMD 

and elastic charge form factors as do those of 

the experimental data. 

 

Theory 

The charge density distribution (CDD) of 

one body operator can be written as [14,15]: 
 

𝜌𝑐ℎ(𝑟) =
1

4𝜋
∑ 𝜉𝑛ℓ 2(2ℓ + 1)|𝑅𝑛ℓ|

2
𝑛ℓ   ........ (1) 

 

where 𝜉𝑛ℓ is the proton occupation 

probability of the state 𝑛ℓ (𝜉𝑛ℓ = 0 or 1 for 

closed shell nuclei and 0 < 𝜉𝑛ℓ < 1 for open 

shell nuclei) and 𝑅𝑛ℓ is the radial part of the 

single particle harmonic oscillator wave 

function. In the simple shell model, the 1𝑓 −
2𝑝 shell nuclei are considered as an inert core 

of filled 1s, 1p, 1d, and 2s while the 1f orbit is 

occupied by (𝑍 − 20) protons. According to 

the assumption of the simple shell model of 

Eq.(1), an analytical expression for the CDD 

of 1𝑓 − 2𝑝 shell nuclei is obtained as [11]: 
 

𝜌𝑐ℎ(𝑟) =  
 𝑒−𝑟2/𝑏2

𝜋3/2 𝑏3 [5 + 4 (
𝑟

𝑏
)
4

 + (𝑍 − 20)
8

105
 (

𝑟

𝑏
)
6

] 

 .......................................................... (2) 
 

The calculated results obtained by Eq. (2) 

have poor agreement with experimental data. 

To derive an explicit form for the CDD of 1f- 

2p shell nuclei, we assume that there is a core 

of filled 1s, 1p and 1d orbitals and the proton 

occupation numbers in 2s, 1f and 2p orbitals 

are equal to, respectively, (2 − 𝛼1), (𝑍 − 20 − 𝛼2) 

and (𝛼1 + 𝛼2) and not to 2, (𝑍 − 20) and 0 as 

in the simple shell model, where the 

parameters 𝛼1 and 𝛼2 are the occupation 

number of higher shells. Using this 

assumption, with the help of Eq. (1), the 

ground state charge density distribution can be 

written as: 
 

𝜌𝑐ℎ(𝑟) =   
 𝑒−𝑟2/𝑏2

𝜋3/2 𝑏3 [5 − 
3

2
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5

3
𝛼2) (
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4
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4

21
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8

105
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4

15
𝛼1) (

𝑟

𝑏
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6

  ]  ....................................................... (3) 
 

where Z is the atomic number of nuclei, b is 

the harmonic oscillator size parameter. 

The normalization condition of the 𝜌𝑐ℎ is 

given by 
 

𝑍 = 4𝜋 ∫ 𝜌𝑐ℎ(𝑟) 𝑟
2 𝑑

∞

0
𝑟  ............................ (4) 

 

and the mean square radius (MSR) of the 

nuclei is given by 
 

〈𝑟2〉 =
4𝜋

𝑍
∫ 𝜌𝑐ℎ(𝑟) 𝑟

4 𝑑
∞

0
𝑟  ......................... (5) 

 

The central CDD, 𝜌(𝑟 = 0) is obtained 

from Eq. (3) as 
 

𝜌𝑐ℎ(0) =   
1

𝜋3/2 𝑏3 [5 − 
3

2
𝛼1 ]  ...................... (6) 

 

then 𝛼1 is obtained from Eq. (6) as 
 

𝛼1 = 
2

3
[5 − 𝜌𝑐ℎ(0)𝜋

3/2 𝑏3]  ....................... (7) 
 

Substitution of Eq. (3) into Eq. (5) and after 

simplification gives: 
 

〈𝑟2〉 =
𝑏2

𝑍
 [

9𝑍−60

2
+ 𝛼1]  ............................... (8) 

 

In Eq’s (6) and (8), the values of the central 

density 𝜌𝑐ℎ(0) and 〈𝑟2〉 are taken from the 

experiments while the parameter b is chosen in 

such a way as to reproduce the experimental 

root mean square radii of nuclei. 

The PMD, 𝑛(𝑘), of the considered nuclei is 

studied using two distinct methods. In the first, 

it is determined by the shell model using the 

single particle harmonic oscillator wave 

functions in momentum representation and is 

given by [16]: 

𝑛(𝑘) =  
𝑏3

𝜋3/2 
𝑒−𝑏2𝑘2

[5 + 4 (𝑏𝑘)4 +

(𝑍 − 20)
4

105
 (𝑏𝑘)6]  .......................... (9) 

 

k is the momentum of the particle. 
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Where as in the second method, the 𝑛(𝑘) is 

determined by the Coherent Density 

Fluctuation Model (CDFM), where the mixed 

density is given by [9,10] 
 

𝜌(𝑟, 𝑟′) = ∫ |𝑓(𝑥)|2
∞

0
𝜌𝑥(𝑟, 𝑟

′)𝑑𝑥  ............. (10) 
 

where 
 

)
2

1
(

)(

))((
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1
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F
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x

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  .................................. (11) 
 

is the density matrix for Z protons 

uniformly distributed in a sphere with radius x 

and density 3

0 4/3)( xZx   . The Fermi 

momentum is defined as [9,10]: 
 

3/131

0

2

8
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;)(
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3
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
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
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Z
V

x

V
xxkF



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  .................................. (12) 
 

and the step function ,  is defined by  
 










0,0

0,1
)(

y

y
y   ......................................... (13) 

 

The diagonal element of Eq. (10) gives the 

one-particle density a 
 







0

2
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  .................................. (14) 
 

In Eq. (14), )(rx  and 
2

)(xf  have the 

following forms [9,10]: 
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x
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
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1
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The weight function of Eq. (16), 

determined in terms of the CDD satisfies the 

following normalization condition [9,10] 
 





0

2
,1)( dxxf   .................................. (17) 

 

and holds for monotonically decreasing 

density CDD distribution, i.e.  .0
)(


dr

rd ch  

On the basis of Eq. (14), the PMD, 𝑛(𝑘), is 

expressed as [9,10]: 
 

𝑛(𝑘) = ∫ |𝑓(𝑥)|2 𝑛𝑥(𝑘)
∞

0
𝑑𝑥,  ................... (18) 

where 
 

𝑛𝑥(𝑘) =
4

3
𝜋𝑥3𝜃(𝑘𝐹(𝑥) − |𝑘⃗ |),  ................ (19) 

 

is the Fermi-momentum distribution of the 

system with density 𝜌0(𝑥). By means of Eqs. 

(16), (18) and (19), an explicit form for the 

PMD is expressed in terms of 𝜌𝑐ℎ(𝑟) as  
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with normalization condition 

 3

3

)2(
)(



kd
knZ CDFM   ..................... (21) 

 

The elastic monopole form factor )(qF  of 

the target nucleus is also expressed in the 

CDFM as [9,10]: 
 

dxxqFxf
Z

qF ),()(
1

)(
0

2




   ....... (22) 

 

where ),( xqF is the form factor of uniform 

charge density distribution given by: 

 









 )cos(

)(

)sin(
.

)(

3
),(

2
qx

qx

qx
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A
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  ................................. (23) 
 

Inclusion of the corrections of the nucleon 

finite size )(qF fs
and the center of mass 

corrections )(qFcm  in the calculations requires 

multiplying the form factor of equation (22) by 

these corrections. Here, )(qF fs
 is considered as 

free nucleon form factor which is assumed to 

be the same for protons and neutrons. This 

correction takes the form [17]: 
 













 


4

43.0 2

)(

q

fs eqF   .................................... (24) 
 

The correction Fcm (q) removes the spurious 

state arising from the motion of the center of 

mass when shell model wave function is used 

and given by [17]: 
 
















A

qb

cm eqF
4

22

)(   ..................................... (25) 
 

It is important to point out that all physical 

quantities studied above in the framework of 
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the CDFM such as PMD and )(qF , are 

expressed in terms of the weight function 

|𝑓(𝑥)|2. Therefore, it is worthwhile trying to 

obtain the weight function firstly from the 

CDDs of two parameter Fermi (2PF) and three 

parameter Fermi (3PF) models extracted from 

the analysis of elastic electron-nuclei 

scattering experiments and secondly from 

theoretical considerations. The CDD's of 2PF 

and 3PF, respectively are given by [12] 
 

𝜌𝑐ℎ(𝑟) =
𝜌0

1+𝑒(𝑟−𝑐)/𝑧   ................................ (26-a) 

𝜌𝑐ℎ(𝑟) =
𝜌0(1+𝑤𝑟2/𝑐2)

1+𝑒(𝑟−𝑐)/𝑧    ........................... (26-b) 

 

Introducing Eqs. (26) into Eq. (16), we 

obtain the experimental weight function 
2

2
)(
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3
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xf  as 
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𝑧
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 ................................ (27-b) 

 

Moreover, introducing the derived CDD of 

Eq. (3) into Eq. (16), we obtain the theoretical 

weight function |𝑓(𝑥)|𝑡ℎ
2  as 

 

|𝑓(𝑥)|𝑡ℎ
2 =

8𝜋𝑥4
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16𝑥4
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2

5
𝛼1 +
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Results and Discussion 
The proton momentum distribution n(k) and 

elastic electron scattering form factors for 

some even 1f-2p shell nuclei are studied by 

means of the CDFM. The distribution 

)(knCDFM of eq. (20) is calculated by means of 

the CDD obtained firstly from theoretical 

consideration as in Eq. (3) and secondly from 

experiments, such as, 2PF and 3PF [12].  The 

harmonic oscillator size parameter b is chosen 

such that to reproduce the measured root mean 

square radii (rms) of nuclei under study and 

the parameter 𝛼1 is determined by introducing 

the chosen value of b and the experimental 

central density 𝜌𝑒𝑥𝑝(0) into Eq. (7), while the 

parameter 𝛼2 is assumed as a free parameter to 

be adjusted to obtain agreement with the 

experimental CDD. It is important to remark 

that when 𝛼1 = 𝛼2 = 0 , Eq.(3) is reduced to 

that of the simple shell model prediction. 

In Table (1), we present the values of the 

parameters (c and z) and (, c and z) used to 

extract, respectively, 2PF and 3PF CDD’S 

together with central charge densities 𝜌𝑒𝑥𝑝(0) 

for 56Fe, 62Ni and 68Zn nuclei. Table (2) 

displays all parameters needed for calculating 

𝜌𝑐ℎ(𝑟) of Eq.(3), such as the harmonic 

oscillator size parameter b and the calculated 

parameters of 𝛼1 and 𝛼2 for considered nuclei. 

Table(3) demonstrates the calculated 

occupation numbers for 2s, 1f, and 2p shells. 

The calculated rms 〈𝑟2〉𝑐𝑎𝑙
1/2

  and those of 

experimental data 〈𝑟2〉𝑒𝑥𝑝
1/2

 [12] are displayed in 

this table as well for comparison. The 

comparison shows a remarkable agreement 

between 〈𝑟2〉𝑐𝑎𝑙
1/2

  and 〈𝑟2〉𝑒𝑥𝑝
1/2

 for all considered 

nuclei. 
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Table (1) 

Values of various parameters required by the CDD of 2PF and 3PF models together with 

𝝆𝒆𝒙𝒑(𝟎). 

Nuclei 
Parameters of the experimental CDD [12] 𝝆𝒆𝒙𝒑(𝟎) fm-3 

[12] model w C (fm) z (fm) 
56Fe 2PF ---- 4.111 0.558 0.07562164 
62Ni 3PF -0.209 4.442 0.538 0.07999800 
68Zn 2PF ---- 4.353 0.567 0.07434364 

 

Table (2) 

Calculated parameters used in Eq. (3) for the calculations of the CDD. 

Nuclei Z b 𝜶𝟏 𝜶𝟐 
56Fe 26 2.08 0.8055971 0.4899781 
62Ni 28 2.069 0.7015126 0.7253149 
68Zn 30 2.12 0.7021746 0.8497643 

 

Table (3) 

Calculated occupation numbers of 2s, 1f, and 2p shells together with the calculated and 

experimental rms radii. 

Nuclei 
Occupation No. 

of 𝟐𝒔 (𝟐 − 𝜶𝟏) 

Occupation No. 

of 𝟏𝒇 (𝒁 − 𝟐𝟎 − 𝜶𝟐) 
Occupation No. 

of 𝟐𝒑 (𝜶𝟏 + 𝜶𝟐) 

〈𝒓𝟐〉𝒄𝒂𝒍
𝟏/𝟐

 (fm) 

obtained eq (8) 

〈𝒓𝟐〉𝒆𝒙𝒑
𝟏/𝟐

 

(fm) [12] 

56Fe 1.194403 5.510022 1.295575 3.822 3.800 
62Ni 1.298487 7.274685 1.426828 3.845 3.822 
68Zn 1.297825 9.150236 1.551939 3.979 3.979 

 

Fig.(1) shows the dependence of the CDD 

(in fm-3) on r  (in fm) for 56Fe, 62Ni and 68Zn 

nuclei. The blue and red curves are the 

calculated results using Eq. (3) with          

𝛼1 = 𝛼2 = 0 and 𝛼1 ≠ 𝛼2 ≠ 0, respectively 

whereas the filled circle symbols correspond to 

the experimental data [12]. It is obvious that 

the form of the CDD represented by Eq. (3) 

behaves as an exponentially decreasing 

function, as seen by the red and blue curves for 

all considered nuclei of Fig.(1). This figure 

shows that the probability of finding a proton 

near the central region (0 ≤ r ≤ 2 fm) of the 

CDD is larger than the tail region (r > 2 fm). 

Besides, including the higher shells through 

introducing the values of 𝛼1 and 𝛼2 [presented 

in Table (2)] into Eq. (3) leads to decreasing 

significantly the central region of the CDD and 

increasing slightly the tail region of the CDD, 

as seen by the red curves. This means that the 

effect of inclusion of higher shells tends to 

increase the probability of transferring the 

protons from the central region of the nucleus 

towards its surface region and then makes the 

nucleus to be less rigid than the case when 

there is no this effect. Fig.(1) also illustrates 

that the blue curves in all considered nuclei are 

not in good agreement with those of 

experimental data of Ref.[12], especially at the 

central region of the CDD. But once the higher 

shells are considered to the calculations, the 

calculated results for the CDD become in 

astonishing agreement with those of 

experimental data throughout the whole range 

of r as seen by the red curves.  

Fig.(2) illustrates the dependence of the 

n(k) (in fm3) on k (in fm-1) for 56Fe, 62Ni and 
68Zn nuclei. The blue curves correspond to the 

PMD’s of Eq. (9) evaluated by the shell model 

using the single particle harmonic oscillator 

wave functions in the momentum space. The 

filled circle symbols and red curves 

correspond to the PMD’s obtained by the 

CDFM of Eq. (20) employing the 

experimental and theoretical CDD, 

respectively. It is evident that the behavior of 

the blue curve estimated by the shell model is 

in contrast with the curves imitated by the 
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CDFM. The significant property of the blue 

curve is the steep slope mode, when k 

increases. This behavior is in disagreement 

with the studies [9,10,18-20] and it is 

attributed to the fact that the ground state shell 

model wave functions given in terms of a 

Slater determinant does not take into account 

the important effects of the short range 

dynamical correlation functions. Hence, the 

short-range repulsive features of the nucleon-

nucleon forces are responsible for the high 

momentum behavior of the PMD [18, 19]. It is 

noted that the general structure of the filled 

circle symbols and red curves at the region of 

high momentum components is almost the 

same 56Fe, 62Ni and 68Zn nuclei, where these 

curves have the property of long tail manner at 

momentum region k ≥ 2 fm-1. The property of 

long-tail manner obtained by the CDFM, 

which is in agreement with the studies [9, 10, 

18- 20], is connected to the presence of high 

densities 𝜌𝑥(𝑟) in the decomposition of Eq. 

(14), though their fluctuation functions |𝑓(𝑥)|2 

are small. 

The dependence of elastic electron 

scattering charge form factors on the 

momentum transfer q (in fm-1) for considered 

nuclei is shown in Fig.(3). The calculated form 

factors (solid curves) of 56Fe, 62Ni and 68Zn 

nuclei, obtained CDFM using the theoretical 

weight function of Eq.(28), which are 

compared with those of experimental data 

(filled circle symbols) [12,21,22]. This figure 

shows that the experimental form factors of 

these nuclei are in very good agreement with 

those of calculated result. 

 

Summary and Conclusions 

The PMD and elastic charge form factors 

F(q), which are evaluated by the CDFM , are 

formulated via the weight function (|𝑓(𝑥)|2). 

The weight function, which is related with the 

local density 𝜌𝑐ℎ(𝑟), is obtained from 

experiment and from theory. The property of 

the long-tail mode of the PMD, which is in 

agreement with the other studies [9,10,18-20], 

is achieved by both theoretical and 

experimental weight functions and is 

connected to the presence of high densities 

𝜌𝑥(𝑟) in the decomposition of Eq. (14), though 

their weight functions are small. It is observed 

that the theoretical CDD of Eq. (3) utilized in 

obtaining the theoretical weight function of 

Eq.(28) is able to provide information about 

the PMD and elastic charge form factors as do 

those of the experimental data. 

 

 
 

 
 

 
 

Fig.(1): Dependence of the CDD on r for 
56Fe, 62Ni and 68Zn nuclei. The blue and red 

curves are the calculated CDD of Eq. (3) 

when 0 and 0, respectively. 

The filled circle symbols are the experimental 

data taken from ref. [12]. 
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Fig.(2): Dependence of PMD on k  for 56Fe, 
62Ni and 68Zn nuclei. The red curves and 

filled circle symbols are the calculated PMD 

obtained in terms of the CDFM of Eq. (20) 

using the theoretical CDD of Eq. (3) and the 

experimental data of ref. [12], respectively. 

The blue curves are the calculated PMD of 

Eq. (9) obtained by the shell model 

calculation using the single-particle 

harmonic oscillator wave functions in 

momentum representation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(3): Dependence of the form factors on 

momentum transfer q for 56Fe, 62Ni and 68Zn 

nuclei. The solid curve is the calculated form 

factor of Eq. (22). The experimental data 

(filled circle symbols) are taken from Refs. 

[12], [21] and [22] for 56Fe, 62Ni and 68Zn, 

respectively. 
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 الخلاصة
وعوامل  (PMD) تم حساب توزيعات زخم البروتون

التشكل للاستطارة الالكترونية المرنة للحالة الارضية لبعض 
( الواقعة ضمن القشرة Zn68و  Fe56 ، Ni62النوى الزوجية )

وفقا لانموذج تموج الكثافة المترابط الذي يعبر  1f-2p النووية
. لقد تم التعبير عن دالة (𝑓(𝑥)|2|)عنه بدلالة دالة التموج 
كثافة الشحنة وتم حسابها من النتائج التموج بدلالة توزيعات 

النظرية والعملية. تميزت نتائج توزيعات زخم البروتون 
)المستندة على دالة التموج النظرية والعملية( بخاصية الذيل 
الطويل عند قيم الزخوم العالية. أظهرت هذه الدراسة بان 
  عوامل التشكل النظرية تتفق مع النتائج العملية للنوى

(Fe56 ،Ni26  وZn68.ولكل قيم الزخم المنتقل ) 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


