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Abstract

In this paper, we consider the Dirac-Hartree-Fock equations for system has many-particles. The
difficulties associated with Gaussians model are likely to be more complex in relativistic Dirac-
Hartree-Fock calculations. To processing these problem, we use accurate techniques. The four-
component spinors will be expanded into a finite basis-set, using Gaussian basis-set type dyall.2zp
to describe 4-component wave functions, in order to describe the upper and lower two components
of the 4-spinors, respectively. The small component Gaussian basis functions have been generated
from large component Gaussian basis functions using kinetic balance relation. The considered
techniques have been applied for the heavy element 8Bi. We adopt the Gaussian charge distribution
model to describe the charge of nuclei. To calculate accurate properties of the atomic levels, we
used Dirac-Hartree-Fock method, which have more flexibility through Gaussian basis-set to treat
relativistic quantum calculation for a system has many-particle. Our obtained results for the heavy
atom (Z=83), including the total energy, energy for each spinor in atom, and expectation value of
<r"> give are good compared with relativistic Visscher treatment. This accuracy is attributed to the
use of the Gaussian basis-set type Dyall to describe the four-component spinors.

Keyword: Dirac-Hartree-Fock approach, Gaussian distribution model, Relativistic basis-set, Kinetic

balance.

Introduction distributions are described by a Gaussian

In many areas of physics many-particle charge distribution model. The Dirac equation
problems are solved by generating a basis- set for a single electron in the field of point charge
of suitable single-particle solutions, and then can be solved analytically [2]. We describe the
by using this basis to obtain approximate status of the problem of the electron structure
solutions for the full many-particle problem. of the heavy atom with nuclear charge Z=83.
This approach will be used to solve the Dirac- In relativistic calculations on heavy element
Coulomb Hamiltonian. The strategy of the consist for computational reasons of Gaussian
Dirac-Hartree-Fock approach for calculating functions and it is difficult to describe a
the electronic structure of atoms is to setup an function with a non-zero derivative at the
expectation value of the Dirac-Coulomb origin. Therefore, we use relativistic basis sets
Hamiltonian, and minimize it with respect to to solve this problem. The four-component
variations in the four-component wave wave function will be expanded into a finite
function. The increasing use of all-electron basis-set, by using Gaussian basis functions to
four-component methodology for relativistic describe 4-spinors. The use of Gaussian type
effects in atomic structure calculations brings Dyall basis-set in relativistic Dirac-Hartree-
with it a need for basis-set [1]. The main Fock calculations is likely to prove more
purpose of this work was to show that, if one difficult than in the corresponding non-
starts from numerical results for atoms and fits relativistic cases. Relativistic effects are most
the radial wave functions of the large important in heavy atoms. It will be necessary
components and small components of four- to treat these atoms species with Dirac-
component spinors, one can generate in a few Hartree-Fock basis-set expansion calculations.
more steps a Gaussian basis-set which is The treatment of some relativistic effects
successfully applicable to atoms such as Bi- requires an accurate description of the wave
atom. In most relativistic quantum calculations function in the inner core origin.

based on expansion methods, the nuclei charge
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Theory

The standard Dirac-Hartree-Fock equations
which contain the Coulomb interactions
between the electrons are derived for system
with N-electrons [3], by minimizing the
expectation value of the total energy for an
atom, giving:

Ouq(r)

B = anq (ch ([ va() (222 +
g (r) ) dr Juat (""’““)

“ug(r)) dr) = 22 [ (u,?() +
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T (37 2203 2o + DI, Fila, @) =
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where u (r) and v (r) represent the radial
components of the wave function. The terms
inside the first summation in equation (1)
represents the total energy for one electron
with only one occupied shell, F,(a,a),
G;(a,b) are the radial integrals and l“Jl in
represents the Clebsh-Gordan coefficient, and

the terms in the second summation represent
the total exchange energy. The factor o=l

Ja

after multiplying exchange energy give total
exchange energy between one electron and the
electrons in other shells. The terms inside the
last summation represents the total Coulomb

energy for an atom, the factor %na(na -1)

represents the number of pairs electrons in
a-shell. The 4-spinor wave function structure
may be expanded in a Gaussian basis-sets as

[4].
u a(r) = Ziv lei) (r) gap
v a(r) = Z{V fk% (r) Nagq

where ¢,, and ng, are linear variation
parameters.  fi,(r) and fg(r)are  the
Gaussian basis-sets for large and small
components, respectively, given by [5].
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fL(T') = NLTexP(_fL)TZ

fs(r) = Nsrexp(—{s)r?

The factors ¢, and {s in the exponents
are the only adjustable parameters of these
basis functions and they are usually called the
exponents of the basis function. N, and Ng
are normalization factors. Equation (1) has
been set up for many-electron atoms.
However, it is instruct to minimize it for a one-
electron atom. In the one-electron limit, there
is no Coulomb repulsion or exchange energy
between electrons. The terms inside the first
summation in equation (1) represent the total
energy for one electron in an atom as:

B} = iana (eh (f va() (a“a(ﬂ
% ua(r)) dr = fua(r) (av;r(r) = ua( )) dT)
me? [ (u(r) + v2(r)) dr)

And since one electron has only one
occupied shell, so the summation disappears.
Equation (6) for one electron can be
rearranged slightly to become

Er = [v,(r)

(("’”;f” % 34(r) ) ch = v () (mc? + vm))

dr — [ ug(r)

((a”a—r(” - %va(r)) ch — ug (r) (me? +

2C0) 1 L @
where V(r) is the nuclear Coulomb

potential felt by the electron. In this work we
adopted the Gaussian distribution model to
describe the nuclear charge. The Gaussian
nuclear charge distribution is given by [2]

3/2 2

pn(r) = Zy (nFN) exp (neriN ) ..........
where Z is the nuclear charge and the
exponent of the normalization Gaussian type
function represents the nuclear charge
distribution, determined by the root-mean-
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square radius of this distribution via the
relation

_ 3
=307

Where n is the exponential parameter
choosen to give a root-mean-square value. The
potential V(r) in equation (7) for this charge
density distribution (Gaussian model) is given
by [6]

V(ry) =

pN(rI)
flr rI

Where py (1) represents the nuclear charge
distribution. When the wave functions are
constrained to be normalized, such that la, b is
given by [7]

s = [ (@) + vy ())dr = 84,

The variation in the normalization is Al, as
here:

Al = 2 [(Aug(Muy (1) + Avg (r)v, (1)) dr
.................................. (12)

If we vary u(r), while everything else
remains constant, the change in energy AE;
for one electron is given by:

AET = [v,(r )((M %Aua(r)) ch> dr —
[ Aug( )<(6va(r) Kr va(r)) ch) dr —

2u,(r) (mc + V(r))dr

The first term in equation (13) causes some
trouble, and can be solved by using integration
by parts to solve varying Au,(r). The right
way to minimize a quantity subject to a
constraint for one-electron, is to use the
Lagrange multipliers method given as [8]:

AE} — €Al =0

Substituting equation (12) and equation
(13) into equation (14) and using same
procedure on varying v, (r), we get the single
particle Dirac equations as:

va(r) = (e = V() =

0vg(r) _ Kq

" M UGT) v, (15)
el = —Syy(r) — (e~ V() +
LYo 170 () NN (16)
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To find the variation energy for two
electrons, we used Lagrange multipliers given

by [9]:

ET - Za ea,aAIa,a - Za,b(ea,bAIa,b +
€pallpq) =0

The variation total energy in equation (1)
can be written after variations of radial
integrals in direct Coulomb term F;(a,a) and
exchange Coulomb term G;(a,b) to obtain
Dirac-Hartree-Fock  equations  for  the
electronic structure of many-electrons atoms
using Gaussian basis-set as:

ch(— 220 4+ 2y, (1)) + (g + Ualr) -

me?)u, (r) + EZb:ta 2i=0(2jp +
DI}, ~Yi(a, b, up(r) +
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ch( au;r(r) ua(r)> + (Eaa +U,(r)—
mc?)v,(r) — EZb:ta 2i=0(2jp t+

DI}, ~Yi(a, b,r) vy (r) —

Zb:ﬂ:a €ab Vb(’")5kakb =0 i, (19)

The equations (18) and (19) are a pairs of
Dirac-Hartree-Fock. The symbol )’ means
summation over pairs. Every pair is only
summed once, not twice. U, (r), represents the
potential for each electron shell which differs
for each electron, where €,,ande,,
represent the diagonal and off diagonal
energies, respectively. The term Y;(a, b,r) is
derived from the exchange energy between the
electron and the others electrons in all other
shells.

Calculation and Results

The Dirac-Hartree-Fock radial functions of
the shells occupied in the ground state, were
determine for the natural atom with, Z=83.
The large components u (r) of these shells and
the small components v (r) are depicted in the
figures for the atom Bi. The large and small
radial functions described by relativistic
Gaussian basis-set of double-zeta-polarization.
Fig.(1) represent the large components for all
orbitals of %Bi atom and Fig.(2) shows the
magnification of large radial functions in

Fig.(1).



ls-lar‘g —_— 4d_‘-larg —_—
2s-larg ——  4d-larg ——
6l 2p_-larg —  4f -larg 4
2p-larg ——  4flarg —
3s-larg ——  Ss-larg ——
4 3p_-larg 5p_-larg —— |
3p-larg ——  Splarg —
3d_-larg —— 5d_-larg ——
3d-larg ——  5d-larg —— |

ds-larg ——  6s-larg ——

Large Component{a.u.)
~a

0 05 1 15 2 25 3
R(a.u.)

Fig.(1): The large radial functions in atomic
units against R(a.u) for all orbitals for
Bi-atom using Gaussian-dyall.2zp basis-set.
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Fig.(2): The small radial functions in atomic
units against R(a.u) for all orbitals for
Bi-atom using Gaussian-dyall.2zp basis-set.

Fig.(2) shows the small component radial
functions for all orbitals of 8Bi atom. It is
clear that the small components radial
functions are more compact and short ranged
than the large component functions in Fig.(1).
The effect of nuclear charge distribution on the
spinor energy is notable when switching from
the singular potential of point nucleus to
Gaussian nucleus potential. The Gaussian
nuclear potential is not different very much,
most important is the effect on relative
energies. The spinor energies in Dirac-Hartree-
Fock level, explained in Table (1) for heavy
element (Z=83) in Hartree atomic units. The
results show the diffrence between two
different nuclear charge distribution models. In
non-relativistic theory the interaction between
the electron and nuclei have traditionally been
described by the simple Coulomb interaction
=—Z/. where r is the distance between an
electron and the point nucleus with charge Z.
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All the orbitals in atoms have zero amplitude
at the nucleus except for s-orbital which has a
cusp of the form exp(—ar). In relativistic
calculations, the Sy spinor for Bi-element
instead has a weak singularity at the nucleus as
explained in Fig.(3).
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Fig.(3): The radial u (r) and v (1)
components in atomic units against R(a.u)
for 1S1» orbital of Bi-atom using Slater type
orbital with point model.

In atomic calculations one expands the
wave function in a large set of Gaussian basis
set functions to solve the weak singularity. In
this paper we adopted two models to describe
the nuclear charge distribution, first model is
point charge and the second is Gaussian
charge model. Fig.(4) displays the radial
functions u () and v (r) components for 1S,
of the Bi-element. The set 24s-contractive
functions of Gaussian basis-set type dyall.2zp,
to describe large component for the 1Si»
spinor, and the set 20s-contractive functions to
describe the small component for the 1Sip
spinor.
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Fig.(4): The radial u (r) and v (r)
components in atomic units against R(a.u)
for 1S1> orbital of Bi-atom using Gaussian-
dyall.2zp basis-set with Gaussian model.




Journal of Al-Nahrain University

Vol.19 (3), September, 2016, pp.70-76

Table (1)

Science

The relativistic spinor energy using different nuclear charge models for the heavy element
(Z=83). Bismuth atom Dyall basis set is [24s 20p 14d 9f] compared with Visscher [11].

level D!—IF Energy(a.u.) for DHI_: Energy(a.u.) For Visscher /DHF-
Point model/ Our work | Gaussian model/ Our work | Energy (a.u.) [10]
1s 3352.039076 3349.426061 3352.0391
2s 607.7970911 607.3929225 607.79709
2p- 582.4967817 582.4827155 582.49678
2p 497.0931648 497.1084527 497.09316
3s 149.3877267 149.2941326 149.38773
3p- 138.1044219 138.101003 138.10442
3p 118.7419927 118.7464702 118.74199
3d- 35.7578451 35.73385 35.757845
3d 100.6180719 100.6222678 100.61807
4s 96.55142238 96.55537283 96.551422
4p- 30.83293247 30.83232473 30.832932
4p 25.99901423 26.00045681 25.999014
4d- 6.691186093 6.686253608 6.6911861
4d 18.02529423 18.02656354 18.025294
4f- 17.11319409 17.1144013 17.113194
Af 4.909505587 4.909584734 4.9095056
5s 3.976443466 3.976926294 3.9764435
Sp- 0.686847825 0.686193192 0.68684783
S5p 6.703886555 6.704797944 6.7038866
5d- 6.49522632 6.496119123 6.4952263
5d 1.389084536 1.389435764 1.3890845
6s 1.270617291 1.270949268 1.2706173
6p- 0.338421356 0.338483487 0.33842136
6p 0.261082685 0.261177872 0.26108269
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Table (2)
Comparison of the radial expectation values <R>, <1/R> and <R?> for Gaussian model and point
nucleus model of heavy element (Z=83) using Dyall basis-set with Dirac-Hartree-Fock method.

our work Our Wgrk Our \_/vork Our wprk our work Our Wprk
: Gaussian Point Gaussian . Gaussian
Point model Point model
model model model model
level <R> <R> <1/R> <1/R> <R?> <R?>
1s | 0.015780291 | 0.015793731 | 103.40544 | 103.16879 | 0.000345809 | 0.000346321
2s | 0.065716919 | 0.065752034 | 25.621494 | 25.579814 | 0.00517977 | 0.00518502
2p- | 0.053955292 | 0.0539579 25.492566 | 25.488533 | 0.00365276 | 0.003653056
2p | 0.062962803 | 0.062961921 | 20.232288 | 20.232575 | 0.004829353 | 0.004829218
3s | 0.17067767 | 0.17074399 | 9.3992803 | 9.388873 0.033480075 | 0.033505608
3p- | 0.16151088 | 0.16151529 | 9.2868081 | 9.2857119 | 0.030491001 | 0.030492531
3p | 0.17783421 | 0.17783158 | 7.9154819 | 7.9155985 | 0.036755386 | 0.036754287
4s | 0.37662658 | 0.37675449 | 3.9773022 | 3.9741684 | 0.16015019 | 0.16025817
3d- | 0.15463411 | 0.15463153 | 7.7961567 | 7.7962877 | 0.028076555 | 0.028075616
3d | 0.15957911 | 0.15957658 | 7.4931312 | 7.4932489 | 0.029773422 | 0.029772471
4p- | 0.37800317 | 0.37801084 | 3.8627395 | 3.8624335 | 0.16260403 | 0.1626103
4p | 0.41101238 | 0.41100553 | 3.4089562 | 3.4090077 | 0.19196789 | 0.19196126
5s | 0.84039171 | 0.84068511 | 1.63582 1.6348326 | 0.79055793 | 0.79110502
4d- | 0.41504372 | 0.41503495 | 3.2095222 | 3.2095897 | 0.19885232 | 0.19884376
4d | 0.42584118 | 0.42583227 | 3.1040405 | 3.1041044 | 0.20909878 | 0.20908989
5p- | 0.89564719 | 0.89566224 | 1.5166225 | 1.5165458 | 0.90361369 | 0.90364078
5p | 0.98011627 | 0.98008874 | 1.3541795 | 1.3542096 | 1.0824889 1.0824228
6s | 2.2417491 2.2428653 0.57481131 | 0.57443856 | 5.7125757 5.7182223
4f- | 0.43646733 | 0.4364543 2.7683685 | 2.7684434 | 0.22683601 | 0.22682178
4f | 0.4424149 0.44240174 | 2.7282743 | 2.7283475 | 0.23295963 | 0.23294505
5d- | 1.2012479 1.2011784 1.090407 1.0904661 | 1.6655842 1.6653779
5d | 1.2439741 1.2438985 1.0483735 | 1.0484338 | 1.7877966 1.7875647
6p- | 2.7802113 2.7801622 0.45898247 | 0.45897853 | 8.907309 8.9068736
6p | 3.1865734 3.1861687 0.39637609 | 0.3964181 | 11.742169 11.738941

Conclusion

The relativistic Dirac-Hartree-Fock total
energy of the ground state for Bi-atom using
dyall.2zp basis sets, is -21565.70280668 a.u.
with Gaussian charge model. compared
with numerical calculations (visscher) is
-21572.23594272 a.u. The difference in the
two values is -6.5295699399 a.u. This value
is not small if one takes into account. In the
relativistic atomic calculations, the point
charge model is not recommendable,
especially, at or closer to the nuclei. This is
because singularity appearance. Therefore, we
adopted the Gaussian charge model combined
with Gaussian basis functions to obtain
accurate description for closer orbital. The
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total Dirac-Hartree-Fock energy for an atom
depend quite a lot on the models for charge
distribution.
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