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Abstract 

In this paper, the classical and pre-Lie Magnus expansions have been studied, discussing how 

one can find a recursion for the pre-Lie case which already incorporates the pre-Lie identity. A 

combinatorial vision of a numerical method proposed by S. Blanes, F. Casas, and J. Ros in [4], has 

been given on a writing of the classical Magnus expansion in a free Lie algebra, using a pre-Lie 

structure.  [DOI: 10.22401/ANJS.00.2.15] 

 

1. Introduction 

Wilhelm Magnus (1907-1990) is a 

topologist, an algebraist, an authority on 

differential equations and on special functions 

and a mathematical physicist. One of his 

long-lasting constructions is a tool to solve 

classical linear differential equations for 

linear operators, called Magnus expansion 

[14], which has found applications in 

numerous areas, in particular in quantum 

chemistry and theoretical physics. 

Magnus expansion is a formal expansion 

of the logarithm of the solution of the 

following linear differential equation: 

 ̇      
 

  
                        

 …(1) 

Many works have been raised to write the 

classical Magnus expansion in terms of 

algebro-combinatorial structures: Rota-Baxter 

algebras, dendri form algebras, pre-Lie 

algebras and others, see for example [8, 9, 7] 

for more details about these works. 

Particularly, a generalization of the latter 

called pre-Lie Magnus expansion had been 

studied [1], and a brief survey about this 

expansion is presented in this paper. An 

approach has been developed to encode the 

terms of the classical and pre-Lie Magnus 

expansions respectively, by A. Iserles with S. 

P. Nørsett using planar binary trees [12], and 

by K. Ebrahimi-Fard with D. Manchon using 

planar rooted trees [9] respectively. 

F. Chapoton and F. Patras introduced a 

concrete formula in [7] using the Grossman-

Larson algebra. This formula has been studied 

briefly in Sections 3 and 4, comparing its 

terms with another pre-Lie Magnus expansion 

terms obtained by K. Ebrahimi-Fard and D. 

Manchon in [9]. This formula can be 

considered as optimal up to degree seven, 

with respect to the number of terms in the pre-

Lie Magnus expansion. The question, raised 

by K. Ebrahimi-Fard, of writing an optimal 

(i.e., with a minimal number of terms) pre-Lie 

Magnus expansion at any order remains open. 

In Section 5, we look at the pre-Lie 

Magnus expansion in the free Lie 

algebra     . The weighted anti-symmetry 

relations lead to a further reduction of the 

number of terms. The particular case of one 

single generator in each degree is closely 

related to the work of S. Blanes, F. Casas and 

J. Ros [4]. A combinatorial interpretation of 

this work is given, using the monomial basis 

of free Lie algebra     described in [3].  

 

2. Classical Magnus expansion 

W. Magnus provides an exponential 

representation of the solution of the well-

known classical initial value problem: 

 ̇      
 

  
               ,         

 …(2) 

Where           are linear operators 

depending on a real variable , and  is the 

identity operator. Magnus considers the 

problem (2) in a non-commutative context. 

The problem, according to Magnus' point of 

view, is to define an operator     1
, 

depending on  , with        , such that: 

        (∫  ̇
 

 
     )   ∑

     

      ...(3) 

                                                           
1
This operator is bounded and absolutely bounded. It is 

assumed to be continuous on the interval      , for 

   , and continuous on any compact subinterval of 

       [14]. 
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Magnus obtains a differential equation 

leading to the recursively defined expansion 

named after him: 

     ∫  ̇
 

 
       

  ∫     
 

 
   ∫ ∑

  

     
 

 
  

∫  ̇
 

 
     

   
          

 …(4) 

where    are the Bernoulli numbers defined 

by: 

∑
  

  
 
       

 

    
  

    
 

 
    

 

  
    

 

   
               

and     is a shorthand for an iterated 

commutator    
    ,    

         

      ,    
   [       ] and, in 

general,   
           

    [14], [5]. 

Taking into account the numerical values of 

the first few Bernoulli numbers, the formula 

in (4) can be written: 

 ̇          
 

 
          

 

 
[          ]  

 
 

  
[             ]        

where  ̇     
 

  
    . One can write the 

expansion in (4) as: 

      ∑          …(5) 

where       is standing for       

∫     
 

 
   and in general: 

      ∑
  

  

   
   ∫   

    

 
                

 …(6) 

  
   

            
     

      

        and: 

  
   

  ∑    
   
        

     
                

 

3. Pre-Lie Magnus Expansion 

In this Section, we study an important 

generalization of the Magnus expansion in the 

pre-Lie setting: let        be a pre-Lie 

algebra defined over a field  . The linear 

transformations    , for    , defined 

by         , such that         , 

for all     . Define ̇   ̇    , for  
  , to be a formal power series in         . 
Now, the classical Magnus expansion, 

described in (4), can be rewritten as: 

 ̇         
  [ ̇]

   (  [ ̇])  
         

  ∑
  

       [ ̇]
 

        …(7) 

where   [ ̇]         ( ̇    )     

*∫  ̇
 

 
           +, Bm are Bernoulli 

numbers, this formula is called pre-Lie 

Magnus expansion [1], [8].  

 

Lemma 1. Let     be linear operators 

depending on a real variable   , then the 

product:  

             *∫       
 

 
     +  …(8) 

verifies the pre-Lie identity, where: 

                            . 

Proof. Let       be linear operators 

depending on a real variable  . Set          

∫        
 

 
, then we have: 

            (                )  …(9) 

In other words,   is a weight zero Rota-Baxter 

operator
2
. Hence: 

(       )    (       )  

                      

[                      ]  

                        

([                      ]  

[                      ]) (by the 

Jacobi identity) 

  [ (              )        ]  

[(               

    )        ]  

[                      ]  

 [             (         )    

(         )     (  

    )        ]  

[                      ]  

 [ (             )        ]  

[                      ] (      )  

                       

[                      ]  

  (       )    (  

     )     

This proves the Lemma. 

 

The formula (7) can be represented as: 

 ̇     ∑  ̇         …(10) 

where  ̇          , and in general:  

                                                           
2
For more details about Rota-Baxter operator, 

Rota-Baxter algebras see [8, Paragraph 5.2] and 

the references therein. 
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 ̇       ∑
  

  

   
   ∑              

            

[ ̇  
] (  [ ̇  

] ( (  * ̇  
+     ) ))           …(11) 

Here, we give few first terms of the pre-Lie 

Magnus expansion described above: 

 ̇           

 
         

 

 
      

  
 

  
           (

 

 
(      

 )    
 

  
(       )    

 

  
(  (       )        

     ))  …(12) 

There are many ways of writing the 

Magnus expansion, for pre-Lie and classical 

formulas, in various settings using Baker-

Campbell-Hausdorff series, dendri form 

algebras, Rota-Baxter algebras, Solomon 

Idempotents and others, for more details 

about these works see [1], [8], [7] and the 

references therein. 

Using the pre-Lie identity, the pre- Lie 

Magnus expansion terms can be reduced: for 

the terms at third order,  ̇     , no further 

reduction of terms is possible. At fourth 

order, two terms can be reduced as follows: 

  ̇        (
 

 
(       )    

 

  
(        )      

(       )              )  

 …(13) 

and, by pre-Lie identity, we have: 

            (       )    

               (       )  

then(13) equals: 

  (
 

 
(       )    

 

  
  

         )  

At fifth order,  ̇     , three terms out of 

ten can be removed [8]. For more details 

about this reduction of pre-Lie Magnus 

expansion terms, see the next sections. 

A beautiful way of writing the pre-Lie 

Magnus expansion is proposed by F. 

Chapoton and F. Patras in their joint work [7]. 

We review here a part of their work 

corresponding to pre-Lie Magnus element, as 

follows: let           be the free pre-Lie 

algebra with one generator  , and   ̂   be 

its completion
3
. The Magnus element in 

  ̂    is the (necessarily unique) solution  ̇ 

to the equation: 

 ̇  (
 ̇

   ( ̇)  
)    …(14) 

The exponential series        ∑
  

      

belongs to      ̂ , the completion of the 

symmetric algebra over      , endowed 

with its usual commutative algebra structure. 

We give in following an important result 

obtained by F. Chapoton and F. Patras in [7]. 

 

Theorem 2. The Magnus element  ̇    in 

  ̂    has the following presentation: 

 ̇                 …(15) 

where  is the Grossman-Larson product
4
. The 

notation      means that the logarithm is 

computed with respect to the product  .  

Proof. See [7, Theorem 4]. 

 

4. An Approach for Magnus Expansion 

Terms Using Rooted Trees 

A. Iserles and S. P. Nørsett have 

developed an alternative approach, using 

planar binary rooted trees to encode the 

classical Magnus expansion terms [12]. K. 

Ebrahimi-Fard and D. Manchon, in their joint 

work [9], used planar rooted trees to represent 

the pre-Lie Magnus expansion. This encoding 

of expansion terms, using planar binary 

rooted trees, is defined as: 

 
Hence, the pre-Lie Magnus expansion, 

described in (12), can be denoted in the 

shorthand as: 

                                                           
3
For further details about the completed pre-Lie 

algebra see the references [13, 1,15]. 
4
Grossman-Larson algebra is defined in the next 

section, Paragraph 4.1. 
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…(16) 

and the reduction in expansion terms at the 

fourth order can be described as: 

 
thanks to the pre-Lie identity: 

 
The approach proposed by K. Ebrahimi-

Fard and D. Manchon is more in the line of 

non-commutative Butcher series
5
. In 

following, we shall review the joint work of 

K. Ebrahimi-Fard and D. Manchon, published 

in [9], on finding an explicit formula, in 

planar rooted tree version, for pre-Lie Magnus 

expansion. Let             be any 

(undecorated) planar rooted tree, denote    , 

for        , by the number of outgoing 

edges, i.e. the fertility of the vertex  of  . The 

degree | |of a tree here is given by the 

number of its vertices. Define the linear map 

         as: 

     
  

  
∏      

 
     

   ∏
     

              …(17) 

where   are Bernoulli numbers. 

 

Lemma 3. For any planar rooted tree  , such 

that there exists         of fertility     
       , we have       .  

Proof. It is immediate from the definition of   

in (17), and the fact that        , for all 

     . 

Define a subspace    
   of all planar rooted 

trees excluding trees with at least one vertex 

of fertility       , with      . The tree 

functional   is defined recursively by: 
                      

   
                               …(18) 

where             , and 

 

 
 

Theorem 4. The pre-Lie Magnus expansion is 

presented as: 

 
                                                           

5
For more details about Butcher series see [6, 

Section 4.1]. 

 ̇     ∑                  
    …(19) 

Proof. See [9, Theorem 20]. 

 

For      the numbers of trees in    
    

, 

the subset of all planar rooted trees with "1 or 

even fertility" of degree  , is given by the 

sequence "A049130" in [18]. Here, we give 

few of first terms of this sequence: 

                          .  

We give here some examples of the 

formula of pre-Lie Magnus expansion 

described in (19), as follows: 

 

 

 

 
At order four, we have: 

 

 

 

 

 
but, thanks to pre-Lie identity, we have: 

  

 
then the formula  ̇     can be reduced into 

two terms, as follows: 

 

  

  
Eight trees out of ten appear in the pre-

Lie Magnus expansion at order five, due to 

the recursive nature of this expansion, which 

are: 

…(20) 
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Hence: 

 

 

 
Using the pre-Lie identity as: 

 
we obtain a reduced formula of pre-Lie 

Magnus expansion at order five, with seven 

terms described as: 

 

 

 

 
The reduced formulas at orders four and 

five, described in (20), (21) respectively, are 

considered as best (or optimal) formulas for 

the pre-Lie Magnus expansion at these orders.  

 

4.1 Some calculations in pre-Lie Magnus 

expansion: 

Let us consider the free pre-Lie algebra 

     with one generator  together with 

the pre-Lie grafting  . Then, we can 

represent pre-Lie Magnus expansion in terms 

of rooted trees as in the following. We need 

first to introduce the following result. 

 

Lemma 5. For any planar rooted tree  , we 

have: 

         ̅     

where  is the function described in (18), and 

 ̅ is defined in our work [2, Subsection 2.2]. 

Proof. Let   be any planar rooted tree with 

  branches, then it can be written in a unique 

way as             . Using the induction 

hypothesis on the number   of branches, we 

have: 

        ̅     
Suppose that the hypothesis of this Lemma is 

true for all planar rooted trees   with     

branches, for all    , i.e.,         
 ̅      hence: 

 (by 

definition of F in (18)) 

 

 
(by the hypothesis above) 

 

 

 
Since: 

 
This proves the Lemma. 

 

Proposition 6. The pre-Lie Magnus 

expansion has the following form: 

 ̇( )   ∑                  
  

   

 …(22) 

where        are the coefficients described in 

[2, Theorem 4], and   is the map defined 

above in (17). 

Proof. Immediate from Theorem 4 and 

Lemma 5, and using the formula: 

 ̅    ∑               
that is introduced by [2, Theorem 4]. 

Now for any      
  , let      ̅   . The 

planar rooted tree  is uniquely written as a 

monomial expression  (  )involving the 

root and the left Butcher product. Then  ̅    

is        i.e. the same monomial expression 

where the left Butcher product is replaced by 

the pre-Lie grafting of (non-planar) rooted 

trees. Here, we display optimal (with respect 

to the number of terms) formulas of pre-Lie 

Magnus expansion up to order seven: 

 

…(21) 
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Due to the recursive nature of the pre-Lie 

Magnus expansion at the orders calculated 

above, and thanks to the pre-Lie identity, we 

observe that many terms    are omitted in this 

expansion, for example: 

1. At order four, two terms    out of 4 can be 

removed in  ̇   , namely: 

. 

2. At order five, three terms    out of 10 can 

be removed in  ̇   , the trees of these 

omitted terms are: 

 
3. At order six, the terms of 11 out of 26 trees 

can be removed in ̇   , these trees are: 

 
4. At order seven, the terms of 23 out of 73 

trees can be removed in  ̇   . 

 

Remark 7. This reduction of pre-Lie Magnus 

expansion terms is not unique, for example, at 

order five, we can write the formula  ̇    

with another seven reduced terms, as follows: 
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Now, from the joint works of F. Patras 

with F. Chapoton [7], and with K. Ebrahimi-

Fard[10], recall that: a (non-planar) forest 

           is a commutative product of 

(non-planar) rooted trees   . Denote by      

by the number of trees in  , which is called 

the weight of a forest  , for example 

             . Let   be the linear span of 

the set of (non-planar) forests, it forms 

together with the concatenation an associative 

commutative algebra. Define another product 

  on   by: 

            
     

    ∑         

                 …(23) 

where the sum is over all function   from 

        to        , and     ∏   
 

         . 

The space   forms an associative non-

commutative algebra together with the 

product   defined above. This algebra can be 

provided with a unit element, sometimes it is 

the empty tree. This unital algebra is called 

the Grossman-Larson algebra and denoted by 

      . This algebra acts naturally on   by 

the extending pre-Lie product  . This action 

can be defined recursively by: 

                          …(24) 

for any          and   is a (non-planar) 

rooted tree. 

 

Example 1. For any        (non-planar) 

rooted trees, we have: 

                                  
          

The Grossman-Larson algebra        is 

isomorphic to the enveloping algebra of the 

underlying Lie algebra of      . This 

construction also works for the enveloping 

algebra of any pre-Lie algebra [11]. We refer 

the reader to the references [11, 7, 10], for 

more details about this type of algebras and 

some of its applications. Hence, the formula 

of pre-Lie Magnus expansion described in 

(15) can be rewritten: 

 ( )       ( )  

  ∑
       

    (   )
     

  …(25) 

where           ∑

 

      , for    
 

 is 

a forest of one-vertex trees with weight 

       , and   is the Grossman-Larson 

product.  

In fact, we study here the undecorated 

case, with respect to the forests and trees, of 

the joint works of F. Patras with F. Chapoton, 

and with K. Ebrahimi-Fard respectively. The 

decorated version has been studied in [7, 10]. 

Here, we calculate the few first pre-Lie 

Magnus elements  ̇   , up to    , 

according to the formula (25) above: 

 

 

 

 

 
 

Remark 8. We observe that the formula (25) 

reduces the number of terms in the pre-Lie 

Magnus expansion the same way as the 

reduction induced by the pre-Lie identity in 

formula (22). In other words, formula (25) 

can be considered as a best formula for the 

reduced pre-Lie Magnus expansion. It would 

be interesting to have an explanation of this 

striking fact. 

 

5. A combinatorial approach for Magnus 

expansion using a monomial basis for 

free Lie algebra 

A. Iserles and S. P. Nørsett, in their joint 

work [12], studied the differential equation: 

 ̇                          …(26) 
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Where   is a Lie group,             , 
the set of all Lipschitz functions

6
 from    

into  , the Lie algebra of  . By considering 

the Magnus expansion, they have 

demonstrated, using a numerical method, how 

to write the Magnus expansion in terms of 

nested commutators                   

 [ (      )      ]     of       at different 

nodes             , where   is the time 

step size. They observed that this numerical 

method requires the evaluation of a large 

number of these commutators, which can be 

accomplished in tractable manner by 

exploiting the structure of the Lie algebra. 

Different strategies have been developed 

to reduce the total number of commutators, 

e.g. the use of so-called time symmetry 

property
7
and the concept of a graded free Lie 

algebra [16]. In their joint work [4], the three 

authors S. Blanes, F. Casas, and J. Ros 

proposed to apply directly the recurrence of 

Magnus expansion, described in (4), in 

numerical version to a Taylor series 

expansion of the matrix     . They 

reproduced the Magnus expansion terms with 

a linear combination of nested commutators 

involving   . 

These authors pursued this strategy with 

a careful analysis of the different terms of the 

Magnus expansion by considering its 

behavior with respect to the time-symmetry. 

In the following, we review the part of their 

work corresponding to their strategy of 

rewriting Magnus expansion terms, as 

follows: by taking advantage of the time-

symmetry property, they considered a Taylor 

expansion of      around   

 

       
 

 
 as: 

     ∑   (    

 

)
 

      …(27) 

where     
 

  

      

        
 

 and computed the 

corresponding terms of the component 

            in the Magnus expansion, 

where: 

 

                                                           
6
A real-valued function   is said to be a Lipschitz 

function if and only if it satisfies: |     
    |    |   |, for all   and  , where   is a 

constant independent of   and  . 
7
For more details about this property see [4]. 

     ∑                   [ (   ) [ (   )   

  [  [ (     
)  (   )]  ]+]            

for     
          by taking into account 

the linear relations among different nested 

commutators due to the Jacobi identity. We 

give here the calculation for the components 

  , up to    , obtained by their code [4, 

Section 3]: 

 

 

 

 

 

 

 

 

 

 

 

 

 
where          

 , for    , are matrices. 

The set              can be 

considered as a generating set of a graded free 

Lie algebra, with |  |   [16]. In their 

computations, S. Blanes, F. Casas, and J. Ros 

computed the dimensions of the graded free 

Lie algebra     generated by the set  , 

according to Munthe-Kaas and Owren's work 

[16]. Also, they computed the number of 

elements of the Lie algebra      appearing in 

the Magnus expansion, when a Taylor series 

of      around     and       

 

 

respectively. 

Here, we review some of their 

computations as follows: at the order    , 

we have          , with basis elements 

                                        , 
such that six of these elements appear in 

Magnus expansion around      , that are: 

                           , with two 
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commutators. Whereas, three elements, 

             , only appear in Magnus 

expansion around      

 

, with one 

commutator, as it is shown above. For more 

details about these results see [4, Section 3, 

Pages 439-441]. 

Now, we try to introduce a combinatorial 

vision of the work above, using the notion of 

the monomial basis for free Lie algebra     , 

that we obtained in our work [3]. Let   ( ) 

(respectively      ) be the free pre-Lie 

algebra with one generator  (respectively 

generated by the set   
        ), together 

with the grafting  . Denote   ̂( ) 

(respectively   ̂   ) by the completion of 

  ( ) (respectively     ) with respect to 

the filtration given by the degree, which are 

pre-Lie algebras together with the pre-Lie 

grafting. Let   ∑      
 
be an element in 

  ̂   , that is an infinite linear combination 

of the generators 
 
    .   

Define the map       ( )     ̂    to 

be the unique pre-Lie homomorphism that is 

induced by the universal property of the 

freeness of   ( ): 

 
Figure 1 

such that        .  

 

Lemma 9. For any (undecorated) planar 

rooted tree  , we have: 

    ̅     ∑  ∏                ̅             

 …(28) 

where  ̅     
    , in the right hand side, is 

described in [2, Subsection 2.2] (we use the 

same letter for the undecorated version from 

    onto  ), and where        
  is the tree   

decorated according to the map  .  

Proof. Let   be any (undecorated) planar 

rooted tree, we have that  ̅          is a 

monomial, in     , of the one-vertex tree  

multiplied (by itself) using the pre-Lie 

product  . From the definition of    above, 

we get: 

    ̅                            

 …(29) 
Where        is the monomial of  , in 

  ̂   , induced from the monomial       

by sending the one-vertex tree into its image 

      . 

We proceed by induction on the number 

  of vertices, the case       being obvious. 

Suppose that the formula (28) is true up to 

    vertices. Let       
 , we have that   

can be written in a unique way as    

    , hence: 

 

 
 

Lemma 10. The pre-Lie Magnus element 

 ̇    in   ̂   can be represented as: 

 ̇    ∑          
      ̅      …(30) 

where    ∑       
 

   ̂   . 

Proof. From Theorem 4 and Lemma 5, we 

have that: 

 ̇( )  ∑          
   ̅    …(31) 

We have that  ̇( ) is an element in   ̂( ), 

and the map   can be extended linearly from 

  ̂( ) into   ̂   , such that: 

 ̇          ̇( )   ∑          ̅         
    

This proves the Lemma. 

 

In Lemma 9 above, let us denote 

       ∏            . Hence, we can 

simplify the formula (28) as: 

    ̅     ∑                ̅      …(32) 

Consequently, we can get the following 

result. 

 

Proposition 11. The pre-Lie Magnus 

expansion can be rewritten:  

 ̇    ∑     
     

         ̅     …(33) 

for any      
    

. Here       
    defined 

as in (17), forgetting the decoration.  

Proof. From Lemma 10, and by substituting 

    ̅     obtained in (32), we get: 
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 ̇    ∑            ̅         
  

        

  

 ∑           ̅   
     

      

This proves the Proposition. 

 

Remark 12. The formula for the pre-Lie 

Magnus expansion in (33) can be considered 

as a generalization of the formula (19). In 

other words, it is a decorated version of (19), 

taking into account the relation between the 

maps   and  ̅ described in Lemma 5.  

 

The pre-Lie homomorphism: 

                      

described in our work [3, Section 4], respects 

the degree, it is then continuous for the 

topologies defined by the corresponding 

decreasing filtrations
8
. We denote by the same 

letter   the pre-Lie homomorphism from the 

completed pre-Lie algebra   ̂    onto  ̂   : 

 
Figure 2 

We can get another representation of pre-

Lie Magnus expansion, as in the following 

result. 

 

Corollary 13. The pre-Lie Magnus expansion 

in  ̂    can be rewritten as: 

 ̇     ∑              ̅    
     

     …(34) 

where         ∑             ̂   , for 

    (
 
)   . 

As a particular case, let us take    
      with         , for all    , i.e.,  

          , such that |  |     , and the 

generators are ordered by: 

                

For any       
             is an 

element in    . From our work in [3, Section 

6], we have that the set  ̃             
       forms a monomial basis for the pre-Lie 

algebra          (respectively for the free 

                                                           
8These topologies are induced by metrics 

defined on pre-Lie algebra using compatible 

decreasing filtrations described in [13, 1, 15]. 

Lie algebra               ), where the pre-Lie 

product   is defined by: 

      
 

| |
      (35) 

for          , hence: 

 (    )                     

         
is a linear combination of basis elements 

             , multiplied by coefficients 

    , for all        , where   is the 

(two-sided) ideal of    generated by all 

elements on the form: 

| |        | |                  
Thus, the pre-Lie Magnus expansion in 

(34) can be expressed using the monomial 

basis elements     , for       . Here, we 

calculate the few first reduced pre-Lie 

Magnus elements  ̇     in  ̃   , up to  

   : 

 

 

 

 

 

 

 

 

 

 

 

 

 
Here, we link between our work in [3, 

Section 4], on the pre-Lie construction of the 

Lie algebras, and the work of S. Blanes, F. 



Special Issus: 1st Scientific International Conference,College of Science,Al-Nahrain University,21-22/11/2017, Part II, pp.101-112 

111 

Casas and J. Ros [4], on the writing of 

Magnus expansion. Firstly, we shall consider 

the generators          , of the Lie algebra 

    in their work, as matrix-valued functions 

in  . Define a pre-Lie product on the set of 

formal power series         by: 

           *∫
    

 

 

 
       + …(36) 

for any               
This pre-Lie product described in (36) can be 

visualized as in the following diagram: 

 
Figure 3: The description of   

where    ̃       ∫            
 

 
 . Hence, 

for             
             

  any two 

generators of     , we can apply the pre-Lie 

product defined above in (36) as follows: 

             ∫
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[     ]     

where |  |   , for    . Simply, we shall 

write       
 

|  |
        , for all      . In 

following, we rewrite the calculations of the 

three authors for the components    up to 

   , using the pre-Lie product defined 

above: 
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