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Abstract 

The interpretation of the q-deformed 1-D quantum harmonic oscillator is investigated for two 

definitions of q-deformation. This investigation is achieved by using Zaslavskii’s method to 

obtain the Heisenberg equations of motion (quantum Liouville equations) in the undeformed 

phase space. These quantum Liouville equations exhibit a non-commutative geometry 

produce from the existence of the dilatation operator which is inherent in the q-deformation 

process.  The classical limits of these equations are obtained by applying a special classical 

limiting condition to produce the classical Liouville equations of the q-deformed oscillator. 

These classical Liouville equations are solved by using the method of characteristics in order 

to obtain the classical probability distribution functions for this system. The 2-D and 3-D 

behaviors of these functions were then investigated using a computer visualization method. 

The results of the mathematical derivations together with the computer visualization method 

show that the classical limit of the quantum Liouville equations for the q-deformed 1-D 

quantum harmonic oscillator are statistical in nature where the nonlinearity parameter for the 

q-deformed oscillator is connected with h . This result conforms to that obtained by Ghosh et 

al. for the undeformed 1-D quantum harmonic oscillator.  

The obtained classical probability distribution functions exhibit whorl shapes that evolve with 

time in phase space that are similar to the shapes obtained for the 1-D classical q-deformed 

oscillator. These whorl shapes in phase space are similar to those introduced by Milburn for 

the 1-D classical anharmonic oscillator. This similarity results from the fact that the 

anharmonicity itself represents a kind of deformation with a frequency that is a function of 

amplitude.     

Keywords: quantum q-deformed oscillator, classical limit, classical Liouville equation, 

method of characteristics, classical probability distribution function. 

 

Introduction 

There have been many attempts performed 

to reveal the meaning and the 

interpretation of q-deformation [1-9]. In 

this context, the                 q-deformed 

quantum harmonic oscillator was used as a 

good model example. In 1991, Buzek [1] 

evaluated the time-evolution of the mean 

values of the                q-position and the 

q-momentum for the       q-oscillator in 

order to obtain the periodic classical 

behavior. In this treatment, the non- 

periodic behavior of this oscillator was 

interpreted as the interaction of the 

quantum oscillator with another system. 

Shabanov [2] studied also the meaning and 

the interpretation of the same oscillator 

used by Buzek [1] but in a different 

manner. In 1992, Shabanov [2] obtained 

the                q-deformed variables by 

using the standard Heisenberg 

commutation relations, and defined the q-

deformation parameter, q , to be a function 

of the Planck constant and some 

dimensional parameter, q where 

2
qq e




ω
. To interpret this oscillator, 
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he applied the classical limit 0 , 

1q  for the canonical variables to arrive 

at the classical theory. The second attempt 

by Shabanov [3] was more rigorous than 

the first one, where he introduced in 1993 

the path integral in his approach. Hence, 

the     classical theory was obtained by 

applying the semi classical approximation. 

It turns out that the q-oscillator can be 

interpreted as a particle with a friction 

force acting on the particle, and this force 

is proportional to the particle velocity. 

Man’ko et al. [4] studied both the quantum 

and classical         q-oscillator via the Dirac 

dequantization method to construct the 

classical                     q-oscillator from the 

corresponding quantum q-oscillator and 

interpreted the     q-oscillator as a classical 

non-linear oscillator with a special type of 

nonlinearity, where the frequency of the 

oscillator is a function of the energy which 

is a constant of the motion. Man’ko has 

also dealt with the f-oscillator in the same   

context in 1997 and 1998 [5, 6].  

Furthermore Gruver [7] studied the 

dynamical properties of the q-deformed 

oscillator and found that this oscillator can 

be interpreted as an anharmonic oscillator 

with a q-deformation parameter which can 

be interpreted as a measure of 

anharmonicity. Another attempt to 

interpret the q-deformation can be found in 

the work of Batouli and El Baz [8] who 

studied the q-deformation for the quantum 

harmonic oscillator in a way similar to that 

of Buzek [1], but with some modifications. 

These modifications led to a different 

interpretation for the q-deformation where 

the q-deformed quantum harmonic 

oscillator can be considered as the 

quantum version of a classical forced 

oscillator with a modified q-dependent 

frequency, such that in the limit 1q , the 

driving force disappears. From another 

point of view, the q-deformation can be 

interpreted in terms of the non-

commutative quantum mechanics. In this 

context, Lavagno et al. [9] investigated the 

meaning of                        q-deformation 

by applying non-commutative q-calculus. 

Then, they were able to obtain the 

generalized q-classical theory in terms of 

the q-deformed Poisson bracket [9].  

 Eftekharzadeh et al. and Benatti et al.       

[10-12] also investigated the interpretation 

of the non-commutative quantum 

mechanics by applying the classical limit. 

In spite of all the attempts to interpret           

q-deformation mentioned above, there is 

still a problem facing the understanding of 

the physics behind this kind of 

deformation. The present paper is an 

attempt to investigate the nature of q-

deformation for the q-deformed quantum 

oscillator by using Zaslavskii’s method 

[13] to obtain the Heisenberg equation of 

motion (quantum Liouville equation), then 

approach the classical limit to recover the 

classical Liouville equation of the q-

deformed oscillator.   

The rest of the paper is organized as 

follows. First, the q-deformed quantum 

harmonic oscillator is discussed where its 

Hamiltonian is introduced for both types 

of q-deformation. Then, the equations of 

motion and the Liouville equations are 

derived by using Zaslavskii’s method [13]. 

The solutions for these Liouville equations 

are obtained by using the method of 

characteristics, then used to simulate the 

behavior in two and three dimensions and 

finally the conclusions are presented.    

 

q-Deformed 1-D Quantum Harmonic 

Oscillator 

In general, there are different versions of 

the q-deformed quantum harmonic 

oscillator according to the q–commutator 

that is adopted for each version as well as 

to the definitions of the bosonic operators 

that satisfy these q-commutators [14-19]. 

An example of the q-deformed quantum 

oscillator is given in ref. [15] in which 

Biedenharn introduced the following               

q–commutator:  

 † 1 † ˆ†ˆ ˆ ˆ ˆ ˆ ˆ, 1
N

a a a a q a a qq q q q q q
q

    
  

However, according to Man’ko [4], the        

q-deformed oscillator represents a special 
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type of nonlinearity where the frequency 

of the oscillator depends on the energy of 

the oscillator (i.e.,
2

 ). In this context, an         

f-deformed oscillator, which is a 

generalization of the q-oscillator, was 

introduced by Man’ko [5]. The realization 

of the f-deformed boson operators â f  and

†
â

f
 in terms of the undeformed boson 

operators â  and †â was achieved via the 

transformation [4-6]:   

   

   

ˆ ˆˆ ˆ ˆ1

† † †ˆ ˆˆ ˆ ˆ 1

a f N a f N af

a a f N a f N
f

  



   


     (2)        

where  ˆf N  represents a non-negative 

real operator-valued function of the 

number operator. It should be noted that 

the subscript “f” used here refers to the “f-

deformation” case. Also, whenever a q-

deformation process is used instead of the 

f-deformation process, then the subscript 

“f” is interchanged by “q” and vice versa. 

The transformation from the f-deformed 

oscillator to the q-deformed oscillator or to 

the undeformed oscillator involves 

substituting specific values for the function

 ˆf N  in the transformation of eqn. (2) in 

the form [4-6]:  

 

 

ˆ

1 for undeformedoscillator

ˆ

for q-deformed o scillator
ˆ

Otherwise for f-deformed o scillator

f N

N
q

N











       (3) 

where, 

[ ]
( )

( )

[ ] ( )
ˆ ˆ

1

ˆ
ˆ

ˆfor

sinh

sinh

4a
N N

λ N
N

q λ

q q
N

q q q

-

-

=

-
=

-

                  

and, 

[ ]

[ ]
ˆ

ˆ
1ˆ

1ˆf

1

or
1

N

λ N

N
q λ

q
N

e

q q

e -
=

-

-

=
-

  

     (4b) 

 

Furthermore, the Hamiltonian operators of 

the deformed quantum harmonic 

oscillators for these two types of 

deformation are defined as [4-6, 20, 21]: 

 

 † †ˆ ˆ ˆ ˆ ˆ
2

a a a aq q q q q
 

  
 

H
ω

          (5)  

 

and, 

        2 2

ˆ
2

ˆ ˆ 6    ˆ ˆ1 1

f

N f N N f N

 
  
 

   

ω
H

     

respectively.                                                                                                         

 

Eqn. (5) represents the Hamiltonian 

operator of the q-deformed quantum 

harmonic oscillator in the q-deformed 

Fock space while eqn. (6) represents the 

Hamiltonian operator of the f-deformed 

quantum harmonic oscillator in the 

undeformed Fock space. 

The q-deformed number operator, N̂q , in 

terms of q-deformed boson operators is 

defined as [1,15,19]: 

 

  †ˆ ˆ ˆ ˆN N a aq q qq
          (7)    
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  †ˆ ˆ ˆ1N a aq q q            (8) 

Substituting eqns. (7) and (8) in eqn. (6), 

one gets [15]: 

    ˆ ˆ ˆ 1
2

N Nq qq
 

   
 

ω
H        (9)   

Zaslavskii’s Method for Deriving the 

Quantum Liouville Equation for the       

q-Deformed Oscillator in the                        

 -Representation 

According to Zaslavskii [13], the equation 

of motion of an averaged physical quantity 

( ), ; t   is defined as [13]: 

( )
( )

, ; ˆ , ;
t

i t
t

  
  


¶

= - K
¶

         

(10)        

where, 

( ) ( ) ( )

2

2

1ˆ

ˆ ˆ, , 11

e

eq q




 






 


H H

æ ö -÷çK= ÷ç ÷çè ø

æ ö÷ç× - ÷ç ÷÷çè ø

h

                                 

The Hamiltonian of the q-deformed 

quantum harmonic oscillator is given by 

eqn. (9). And according to Sudarshan et al. 

[22], one have the following 

correspondence: 

( )
†ˆ

for
ˆ

ˆ ,q

a

a





















üï® ïïï
ý
ï® ïïïþ

H           (12) 

 

and, 

( )†
ˆ ,

ˆ

for
ˆ q

a

a














ü® ïïï
ý
ï® ïïþ

H                  

(13) 

Substituting eqns. (12) and (13) into the 

expressions for [ ]N̂ q
 and [ ]ˆ 1N q+  

appearing in ( )ˆ ,q 








H (see eqn. (9)), 

leads to:

 

[ ]
( )

( )

[ ]
( )( )

( )

[ ]
1

sinh

sinh

sinh 1

sin

ˆ ˆˆ
ˆf r

ˆ 1
h

o

λ

N q NNλ q q
N q

q qλ

N q λ





















üïïïïï= ï -ï -ï =ý -ï -ïïïïï
ï

+

+ =
ï
þ

                        (14) 

and, 

[ ]

[ ]

( )
[ ]

1

1

1

1ˆ
ˆ

1ˆfor
1

1

ˆ 1

λ

N q λ N

e

e

e

e

q
N q qλ

N q λ





















üïïïïï- ï= ïï -ïï =ý
ï -ï+ ïïïï+ = ïïï

-

-

- ïþ

                                            (15) 

 

where, [ ]N̂ q and [ ]ˆ 1N q+  given by eqns. (7) and (8). The same method can be used for [ ]N̂ q

and [ ]ˆ 1N q+ appearing in ( )ˆ ,q 





H . Now, substitution of [ ]N̂ q  and [ ]ˆ 1N q+  from    eqns. 

(14) and (15) into eqn. (9), gives: 
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( )
( )

( )

( )( )
( )

sinh sinh 1
ˆ ,

2 sinh sinh

λ λ

λq λ

 
 



 
 




 

  



h
æ ö+ ÷ç ÷æ öç ÷÷çç ÷= ÷çç ÷÷ç ç ÷è øç ÷÷ç ø

+

è

H
ω

              (16a) 

hence, 

( )
( )

1 1ˆ

1

,
2 1 1

λ λ

e e
q

e e
λ λ

 
 




 
 




 

 



h

æ ö÷ç ÷ç ÷çæ ö - - ÷ç÷ ÷ç= ç÷ ÷ç ÷çç ÷è øç ÷- - ÷ç ÷ç ÷è ø

+

+

ç

H
ω

                                     

(16b) 

and, 

( )
( )

( )

( )( )
( )

sinh sinh 1
ˆ ,

2 sinh sinh

λ λ

λq λ

 
 



 
  


h
æ ö+ ÷çæ ö ÷ç÷ ÷ç ç= ÷ ÷ç ç÷ ÷çè ø ç ÷ç ÷çè ø

+H
ω

                                    (17a) 

hence, 

( )
( )

1 1ˆ ,
2

1

1 1

λ λ
e e

λq
e e
λ

 
 




 

 



h
+æ ö÷ç ÷ç ÷æ ö - -ç ÷÷ç ç ÷= ÷ç ç ÷÷ç ç ÷è øç

+
÷- - ÷ç ÷çè ø

H
ω

                  (17b) 

respectively. 

 

Using eqns. (16) and (17) in eqn. (11), 

leads to: 

( )( )

( ) ( )( )

( ) ( )( )

21

2

ˆ 2sinh

sinh sinh 1

sinh sinh 1

λ

λ

e

λ

e

λ

λ



 
 

 
 



 
 

 

 

 

 

-

+

üïï- - ý

-
K=

ìïï

ï

× +í
ïïî

+
ïþ

×

ω

   

                                                           (18a) 

and, 

( )( )

( )

( )

21

2

ˆ 2 1

1

1

e

e e

e e e

λe

λ λ

λ λ



 
 

   

 
 

 

 

 

 

- -
K=

ìï

-

+

+
ïïï×í
ïïïïî

üïïï- - ý
ïïï

+

þ

ω

                (18b) 

respectively. 

Then, using the definition of the sine 

hyperbolic function and re-arranging 

terms, eqn. (18a) can be cast in the form:   
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( )( )

( )

( )

21

2

ˆ 4sinh

1

1

e

λe e e

eλ
e e

λ

λ λ

λ

e
λ



 
 

 
 







 

 

 

 

- -
K=

ì æ öï ÷ï ç ÷ï çï ÷ç× + -í ÷ç ÷ï ç ÷ï ç ÷è øïïî

üæ öï- - ÷ïç ÷- ïç ï÷ç- + - ý÷ç ÷ïç ÷ïç ÷è øïïþ

ω

  

       (19a) 

Similarly, eqn. (18b) becomes: 

( )( )

( )

21

2

1ˆ 2

1

e

e e e

λe

λ λ
λe



   




 

 

- -
K=

ì üæ öï ï÷ï ïç ÷ï ïçï ï÷ç× + -í ý÷ç ÷ï ïç ÷ï ïç ÷è øï ïï ïî þ

-ω

 (19b) 

Eqns. (19a) and (19b) can be substituted in 

eqn. (10), and after replacing ( ), ; t    

by ( ), ; tq   , one obtains:   

 

( )
( )( )

( )

( )

( )

21

2

, ;
4sinh

1

1

, ;

λ

λ λ

tq
e

t

λe e e

λ
e e e

e

λ

t

λ

q

  


 
 

 
 

   











 

 

 

 

-¶
-

=
¶

ì æ öï ÷ï ç ÷ï çï ÷ç× + -í ÷ç ÷ï ç ÷ï ç ÷è øïïî

üæ öï- - ÷ïç ÷- ïç ï÷ç- + - ý÷ç ÷ïç ÷ïç ÷è øïïþ

×

ω

  

     (20a) 

 

and, 

( )
( )( )

( )

( )

21

2

1
, ;

2

1

, ;

λe
tq

e
t

e e

λ

e

t

λ

e

λ

q

  


 
 


  








 

 

-¶
-

=
¶

ì üæ öï ï÷ï ïç ÷ï ïçï ï÷ç× + -í ý÷ç ÷ï ïç ÷ï ïç ÷è øï ïï ïî þ

×

-ω

 

        (20b) 

 

respectively, where the function 

( ), ; tq   represents the q-analog of 

the averaged physical quantity 

( ), ; t    appearing in ref. [13]. Also, it 

is noted that the function ( ), ; tq  

reduces to ( ), ; t   in the limit 1q .  

 

Action of the Dilatation (Shift) 

Operators e

λ








±

 and e
λ






±

 

on the Function ( ), ; tq    

Since the action of the dilatation (shift) 

operator 

x
xe

b
¶

¶  on a function ( )F x is 

given by [23, 24]: 

   
x

xe F x F xe





            (21) 

for any arbitrary constant λb = ± , and 

replacing ( )F x by  ,F   , eqn. (21) 

gives: 

   , ,

λ
λ

F F ee    






 






                 

    (22) 

and, 

   , ,
λ

λ
F F ee   


  






                         

                      (23) 
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Eqns. (22) and (23) can be generalized to 

the case where the shift operator acts on 

the product of two functions 

   , ,F G      (see Appendix). 

Using this result, leads to: 

   

   

, ,

, ,

λ

F G

λ
λ

F e e

e

G

   







  

 























                                      (24) 

and, 

   

   

, ,

, ,

λ
F G

λ
λ

F e

e

e G

   

 





 

 

 















                        

                    (25) 

respectively. 

Therefore, eqns. (20) can be simplified by 

using eqns. (24) and (25) with

     
2

, ,, , ;F e tqG   


     

 and re-arranging to get:     

 

 

( )
( ) ( )( )

( )

( )

( )

2
1

2

2

, ;
4sinh

1

1

, ;

tq
i e

t

λeλe e e e

λeλ
e e

e e tq

λ

λ λ

λ λ

  


   



 
    







 

 

 

 

 

- -

-
-

- -

¶
= -

¶

ì æ öï ÷çï ÷çïï ÷ç× + - ÷í ç ÷ï ç ÷çï ÷÷çè øïïî

- +

æ öüï÷ç ï÷ç ïï÷ç× - ÷ýç ÷ïç ÷ç ï÷÷çè øïïþ

ω

                       (26a) 

and, 

( )
( ) ( )( )

( )

( )

21

2

, ;
2

1

;

1

,

tq
i eλe

λ λλeλe

t

e e e

tq

  


   

  








 

 

-¶
-

= -
¶

ì æ öüï ï÷çï ï÷çï ïï ï÷ç+ - ÷í ýç ÷ï ïç ÷çï ï÷÷çè øï ïï ïî þ

×

-ω

                                (26b) 

respectively.   
 

Eqns. (26) represent the quantum Liouville 

equations for the q-deformed 1-D quantum 

harmonic oscillator in the                                   

 -representation. 

 

 

   

  

 

   

 

2 2

2
2 2

3

2 2

2

, ;

!

2!2

2!

e

tq

S





 




  



 



 











 




















  
  

  

    
 

 




    



 




 







  






       (27) 
where,  
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 

 

 

2 4 6

1

2 3

2

2 3

3

3! 5! 7!

2! 3!

2! 3!

S

S

S

  


 
 

 
 


    




     



     


  (28) 

 

Classical Limit of the Liouville 

Equation for ( ), ; tq   in the  -

Representation  

Expanding all functions appearing in        

eqn. (26a) as power series in  , and 

simplifying the result, one obtains:  

 

 

   

  

1

2
2 2

2

4

!

;

22

, 1

1 S

t i

t

eS

q



 


  






 

  
 

   
  












ω

 

Applying the conditions for classical 

limiting namely; 
2

0,  h  such 

that
2

finite   , to eqn. (28), where 

 .const   h  (i.e., 0  as fast as 

0h ) and letting 

   ; , ;, CL

q
tq t    P  in this 

limit, then eqn. (27) reduces to:  

 



 

2

2

, ;

4

2

2

, ;

CL

CL

i

e

e

q
t

t

q
t

 

 
 



 
 



 











  
  

  

   
   




 



 

  
 

 



 

ωP

P

  

          (29) 

where  , ;CL

q
t P  represents the 

classical probability distribution function. 

It should be noticed that the fact that in 

this limit      1 2 3 0S S S      

has been used. Re-arranging the terms in        

eqn. (29), this equation becomes: 

 

   1

, ;

, ;

CL

CL

q
t

t

q
tqi

 

   




 







  
 




 
ω

P

P

 

                       (30) 

where, 

   2
coshq


 ω ω      (31) 

Eqn. (30) represents a classical Liouville 

equation for a classical harmonic oscillator 

having frequency
 1
qω . By expanding the 

frequency of this oscillator 
 1
qω up to 2 , 

eqn. (30) becomes:  
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 

 
2

4

, ;

, ;
2!

CL

CL

i

q
t

t

q
t

 
 




    








 


    
    

  







  
  

P

P

ω

  

         (32) 

Eqn. (32) can be interpreted as a classical 

Liouville equation for a classical harmonic  

 

oscillator with frequency: 

 
2

42
1

2!q



 

  
 
 

ω ω                          (33) 

Similarly, eqn.  (26b) gives: 

   

   

3, ;

, ; 34

CL

CL

q
t

qt
i

q
t

 

   




 







  
 



 
 

ω
P

P

  

 
2

eq
  
ω ω                  (35) 

Also, by expanding the frequency,
 3
qω , of 

this oscillator up to , and applying the 

same previous mentioned limiting 

conditions, eqn. (34) becomes: 

   

 

4, ;

, ;

CL

CL

q
t

qt

q
t

i
 

   




 







  
  





 

ω
P

P

 

                    (36) 

where, 

   2
1q


  ω ω        (37) 

By using the same technique that was 

introduced in Ref. [25], eqns. (30), (34) 

and (36) can be solved by the method of 

characteristics, and the time–evolution of 

the classical probability distribution 

function can be investigated in the non- 

rotating frame in phase space via a 

computer visualization method [25]. The 

results can then be shown in a                           

2-dimensional time-evolution contours of 

the probability distribution functions

 , ;CL

q
t P  in phase space. These 

probability distributions functions exhibit 

whorl shapes and it is obvious that these 

whorl shapes become finer as t   as in 

Figs. (1) - (3). 

   

                 

 

 

 

 

 

 

 

 

 

 

 

 
     

     

     

     

 
a. b. 
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Also, in Figs (4) - (6), the results of the 3-

D time-evolution of the classical 

probability distribution functions 

 , ;CL

q
t P  are presented in phase 

space. From these figures, it can be seen 

that these probability distributions appear 

as q-deformed Gaussians. It is also clear 

from all these figures that the peaks of 

these q-deformed Gaussians do not change 

with time. These peaks follow the classical 

trajectories for the probability distribution 

functions shown in Figs. (1)-(3). Another 

observation is that the Gaussian shapes of 

these distributions become more 

convoluted around themselves as t  . 

 

 

`  
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Fig.(4): The 3-D time-evolution of the classical probability distribution function 

 for the q-deformed harmonic oscillator with frequency  given by eqn. 

(31) and  in phase space, for different values of time ( ): (a) , (b) ,                       

(c) , and (d) .  

      

      

      

      

 

   

  

  

a. b. 

  

 

 

 

b. a. 

  

 

 

 

 

  

d. c. 
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Conclusions  

A number of conclusions can be drawn 

from the present investigation as follows: 

1. The classical limit of the 1-D q-

deformed quantum harmonic oscillator is 

statistical in nature. This is clear from 

eqns. (32) and (36) where the classical 

Liouville equations are obtained for the 1-

D q-deformed classical harmonic oscillator 

in the                 -representation. This is 

in conformity with the work of Ghosh et 

al. [26], where the classical Liouville 

equation was obtained for the 1-D classical 

simple harmonic oscillator by applying the 

classical limiting conditions 0 , 

2
  , such that 

2
finite  .  

2. The q-deformed 1-D quantum harmonic 

oscillator can be interpreted as a nonlinear 

quantum oscillator where the nonlinearity 

parameter  depends on the h  such that 

 const.   h . This dependence is 

required for the classical limit to exist. 

Based on the more detailed approach to the 

classical limit adopted in this work, this 

interpretation seems to be more accurate 

than that introduced by Man’ko [4] where 

this oscillator was interpreted as a 

nonlinear quantum oscillator with a special 
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type of nonlinearity with an energy 

dependent frequency.  

 3. The q-deformation of the 1-D quantum 

harmonic oscillator induces a                      

non-commutative geometry. This can be 

understood in the light of Vitiello’s work 

[27], where the q-deformation of the 

coherent states was studied to find that the 

fractal self-similarity obtained by defining 

a fractal operator

d

dq


 leads to a               

non-commutative geometry. The 

expression of this fractal operator is 

similar to those appearing in the present 

work as a dilatation (shift) operators 

e







 and e










 . These 

dilatation (shift) operators are inherent in 

the q-deformation and arise naturally in 

the quantum Liouville equations given in 

eqns. (26), for the             q-deformed 1-D 

quantum harmonic oscillator in the  -

representation.   

4. The behavior of the classical limit of the 

quantum Liouville equation for the                

q-deformed 1-D quantum harmonic 

oscillator in phase space shows whorl 

shapes evolving with time as in                  

Figs. (1)-(3). These figures are similar to 

those introduced by Milburn [28] for the     

1-D classical anharmonic oscillator. This 

similarity results from the fact that the 

anharmonicity itself represents a kind of 

deformation with a frequency which is a 

function of. The significance of this 

observation lies in the assumption that the 

whorl shapes in phase space can be 

considered as a generalized phenomenon 

whenever the q-deformation is used for 

any quantum system with arbitrary 

potential. 
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Appendix  

 

The action of the dilatation (shift) 

operators  

   , ,e F G


     




  and 

   , ,e F G


    


  




  

 

Assume two functions  F x and  G x

that have power series expressions of the 

form:

  m
m

m 0

F x a x




     (A.1)  

  m
m

m 0

G x b x




      (A.2)  

Using these expressions, the product 

   F x G x  can be written as: 

     
 

2 3
1 2 3

2 3
1 2 3

o

o

F x G x a a x a x a x

b b x b x b x

    

    

 

     (A.3) 

Multiplying both sides of eqn. (A.3) from 

left by the dilatation (shift) operator 

x
xe




  where   and x  are given in eqns. 

(21), 
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     

 

     

 

     

 

2

1 1 2

3

3

2 2

2 1 2

3

3

3 2

3 1 2

3

3

o

o

o

a e x b b e x b e x

b e x

a e x b b e x b e x

b e x

a e x b b e x b e x

b e x

  



  



  




  




 




  




 




  




 



     (A.5)

     

the result is: 

   










 

2
1 2

3
3

2 3
1 1 1 1 2

4
1 3

2 3 4
2 2 1 2 2

5
2 3

3 4 5 6
3 3 1 3 2 3 3

o o o o

o

o

o

o

x x
x xe F x G x e

a b a b x a b x

a b x

a b x a b x a b x

a b x

a b x a b x a b x

a b x

a b x a b x a b x a b x

 
 

 

  

 

   

 

  

 

    

  (A.4)  

Applying eqn. (21) to eqn. (A.4) and 

simplifying, the result becomes: 

   

   

 

2

1 2

3

3

o o

x
xe F x G x

a b b e x b e x

b e x

 






 


 




 



 

Collecting similar terms, this gives: 

   

     

     

2 3

1 2 3

2 3

1 2 3

o

o

x
xe F x G x

a a e x a e x a e x

b b e x b e x b e x

  

  




 

 
    

 

 
     
 

                                                          (A.6)               

But since,  

   
m

m
m 0

F e x a e x 




    (A.7)  

   
m

m
m 0

G e x b e x 




     (A.8) 

then, substituting eqns. (A.7) and (A.8) 

into eqn. (A.6), one obtains: 

       
x

xe F x G x F e x G e x


 


     (A.9) 

Using    ,F x F   as given in        

eqn. (22) and similarly    ,G x G  

in eqn. (A.9), substituting the definition of 

 

  from eqn. (21) then applying eqns. (22), 

(23) for  ,F  
 and  ,G  

 

respectively to eqn. (A.9), the results 

become:
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   

   

, ,

, ,

λ

e F G

λ
λ

F e e G


    


   


  


 




 




 

     (A.10) 

and, 

   

   

, ,

, ,

λ
e F G

λ
λ

F e e G


    


   

 

 




 




 

   

              (A.11)
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 اىخلاصة

فً    ”q“اىفٍضٌائً ىيحش٘ٓ ٍِ ّ٘ع  اىحفسٍشجقصً جٌ  

ىحاىحٍِ ٍِ  اىبؼذ اى٘احذ ير اىنًَ اىَحزبزب اىح٘افقً

أسحخذاً طشٌقة ٕزٓ اىؼَيٍة بجَث . جؼشٌف اىحش٘ٓ

(Zaslavskii’s) ت ىغشض اىحص٘ه ػيى ٍؼادلا

ىٍ٘فو اىنٍَة( بذلاىة  تىحشمة ىٖاٌضٌْبٍشك )ٍؼادلاا

ليوفل  تأظهرت معادلا. غير المشوه لفضاء الطور اىحَثٍو

الكمية هذه هندسة ذات طبيعة لاتبادلية ناتجة عن وجود مؤثر 

متأصل في والذي يكون  (Dilatation Operator)التمدد 

جٌ أٌضا اىحص٘ه ػيى اىغاٌة اىنلاسٍنٍة   .”q“التشوه 

 ٗدٌة ة جطبٍق ششٗط حذىَؼادلات ىٍ٘فو اىنٍَة ب٘اسط

ٍؼٍْة ىٖزٓ اىَؼادلات ىيحص٘ه ػيى ٍؼادلات ىٍ٘فو 

. جٌ حو ”q“ اىنلاسٍنٍة ىيَحزبزب ري اىحش٘ٓ ٍِ اىْ٘ع 

ىٍ٘فو اىنلاسٍنٍة ٕزٓ بأسحخذاً طشٌقة  تٍؼادلا

ج٘صٌغ الأححَاىٍة ٗاه اىخصائص ىيحص٘ه ػيى د

ٌ جقصً اىسي٘ك ثْائً اىبؼذ ثاىنلاسٍنٍة ىٖزا اىْظاً , 

بأسحخذاً  طشٌقة حاس٘بٍة ٗاه ٗثلاثً اىبؼذ ىٖزٓ اىذ

حٍث جٌ بْاء بشّاٍج حاس٘بً ىٖزا اىغشض , ٍشئٍة

Mathematicaباسحخذاً حضٍة بشٍجٍات  
®

. مشفث 

ىٍ٘فو اىنٍَة  تاىْحائج بأُ اىغاٌة اىنلاسٍنٍة ىَؼادلا

فً  ”q“ ىيَحزبزب اىح٘افقً اىنًَ ري اىحش٘ٓ ٍِ اىْ٘ع 

.  ٕزٓ  اىْحٍجة ت طبٍؼة أحصائٍةاىبؼذ اى٘احذ ًٕ را

 (.Ghosh et al) ة اىحً حصو ػيٍٖاجاىْحٍ جح٘افق ٍغ

 ىيَحزبزب اىح٘افقً اىنًَ غٍش اىَش٘ٓ ري اىبؼذ اى٘احذ

حٍث ٌشجبظ ٍؼاٍو اىلاخطٍة ىيَحزبزب اىَش٘ٓ ٍِ اىْ٘ع 

“q” صو ىذاىة ج٘صٌغ سححاىسي٘ك اىَأظٖش .  باىثابث

الأححَاىٍة اىنلاسٍنٍة اشناه ى٘ىبٍة جحط٘س ٍغ اىضٍِ فً 

اىَقذٍة ٍِ قبو  فضاء اىط٘س ٍشابٖة ىحيل الاشناه

(Milburn)  اىبؼذ  يىيَحزبزب اىلاج٘افقً اىنلاسٍنً ر

ٕزا اىحشابٔ ّاجج ٍِ اىحقٍقة اىحً جْص ػيى أُ  .اى٘احذ

ّفسٖا جَثو ّ٘ع ٍِ أّ٘اع اىحش٘ٓ حٍث اىحشدد  ةاىلاج٘افقٍ

  اىة ىيسؼة. د
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