Journal of Al-Nahrain University Vol. 19. September, 2016, pp. 53-69 Science

Interpretation of the g-Deformed 1-D Quantum Harmonic Oscillator
A. S. Mahmood and M. A. Z. Habeeb
Department of Physics, College of Science, Al-Nahrain University, Baghdad, Irag.

Abstract

The interpretation of the g-deformed 1-D quantum harmonic oscillator is investigated for two
definitions of g-deformation. This investigation is achieved by using Zaslavskii’s method to
obtain the Heisenberg equations of motion (quantum Liouville equations) in the undeformed
phase space. These quantum Liouville equations exhibit a non-commutative geometry
produce from the existence of the dilatation operator which is inherent in the q-deformation
process. The classical limits of these equations are obtained by applying a special classical
limiting condition to produce the classical Liouville equations of the g-deformed oscillator.
These classical Liouville equations are solved by using the method of characteristics in order
to obtain the classical probability distribution functions for this system. The 2-D and 3-D
behaviors of these functions were then investigated using a computer visualization method.
The results of the mathematical derivations together with the computer visualization method
show that the classical limit of the quantum Liouville equations for the g-deformed 1-D
quantum harmonic oscillator are statistical in nature where the nonlinearity parameter for the
g-deformed oscillator is connected with h . This result conforms to that obtained by Ghosh et
al. for the undeformed 1-D quantum harmonic oscillator.

The obtained classical probability distribution functions exhibit whorl shapes that evolve with
time in phase space that are similar to the shapes obtained for the 1-D classical g-deformed
oscillator. These whorl shapes in phase space are similar to those introduced by Milburn for
the 1-D classical anharmonic oscillator. This similarity results from the fact that the
anharmonicity itself represents a kind of deformation with a frequency that is a function of
amplitude.

Keywords: quantum g-deformed oscillator, classical limit, classical Liouville equation,
method of characteristics, classical probability distribution function.

Introduction quantum oscillator with another system.
Shabanov [2] studied also the meaning and
the interpretation of the same oscillator
used by Buzek [1] but in a different
manner. In 1992, Shabanov [2] obtained
the g-deformed variables by
using the standard Heisenberg
commutation relations, and defined the g-
deformation parameter, q, to be a function

There have been many attempts performed
to reveal the meaning and the
interpretation of g-deformation [1-9]. In
this context, the g-deformed
guantum harmonic oscillator was used as a
good model example. In 1991, Buzek [1]
evaluated the time-evolution of the mean

values of the g-position and the f the Planck tant d
g-momentum for the g-oscillator in o ¢ aneie onsiarit - anc Some
order to obtain the periodic classical dimensional  parameter,  fqwhere
behavior. In this treatment, the non- -h/ezoo

periodic behavior of this oscillator was g=e / 9. To interpret this oscillator,

interpreted as the interaction of the
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he applied the classical limit 7 —0,
g —1 for the canonical variables to arrive

at the classical theory. The second attempt
by Shabanov [3] was more rigorous than
the first one, where he introduced in 1993
the path integral in his approach. Hence,
the classical theory was obtained by
applying the semi classical approximation.
It turns out that the g-oscillator can be
interpreted as a particle with a friction
force acting on the particle, and this force
is proportional to the particle velocity.
Man’ko et al. [4] studied both the quantum
and classical g-oscillator via the Dirac
dequantization method to construct the
classical g-oscillator from the
corresponding quantum g-oscillator and
interpreted the  g-oscillator as a classical
non-linear oscillator with a special type of
nonlinearity, where the frequency of the
oscillator is a function of the energy which
is a constant of the motion. Man’ko has
also dealt with the f-oscillator in the same
context in 1997 and 1998 [5, 6].

Furthermore Gruver [7] studied the
dynamical properties of the g-deformed
oscillator and found that this oscillator can
be interpreted as an anharmonic oscillator
with a g-deformation parameter which can
be interpreted as a measure of
anharmonicity.  Another  attempt to
interpret the g-deformation can be found in
the work of Batouli and El Baz [8] who
studied the g-deformation for the quantum
harmonic oscillator in a way similar to that
of Buzek [1], but with some modifications.
These modifications led to a different
interpretation for the g-deformation where
the g-deformed quantum harmonic
oscillator can be considered as the
guantum version of a classical forced
oscillator with a modified g-dependent
frequency, such that in the limit g —1, the

driving force disappears. From another
point of view, the g-deformation can be
interpreted in  terms of the non-
commutative quantum mechanics. In this
context, Lavagno et al. [9] investigated the
meaning of g-deformation
by applying non-commutative g-calculus.
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Then, they were able to obtain the
generalized g-classical theory in terms of
the g-deformed Poisson bracket [9].
Eftekharzadeh et al. and Benatti et al.
[10-12] also investigated the interpretation
of the non-commutative quantum
mechanics by applying the classical limit.
In spite of all the attempts to interpret
g-deformation mentioned above, there is
still a problem facing the understanding of
the physics behind this kind of
deformation. The present paper is an
attempt to investigate the nature of g-
deformation for the g-deformed quantum
oscillator by using Zaslavskii’s method
[13] to obtain the Heisenberg equation of
motion (quantum Liouville equation), then
approach the classical limit to recover the
classical Liouville equation of the g-
deformed oscillator.

The rest of the paper is organized as
follows. First, the g-deformed quantum
harmonic oscillator is discussed where its
Hamiltonian is introduced for both types
of g-deformation. Then, the equations of
motion and the Liouville equations are
derived by using Zaslavskii’s method [13].
The solutions for these Liouville equations
are obtained by using the method of
characteristics, then used to simulate the
behavior in two and three dimensions and
finally the conclusions are presented.

g-Deformed 1-D Quantum Harmonic
Oscillator

In general, there are different versions of
the g-deformed quantum  harmonic
oscillator according to the g—commutator
that is adopted for each version as well as
to the definitions of the bosonic operators
that satisfy these g-commutators [14-19].
An example of the g-deformed quantum
oscillator is given in ref. [15] in which
Biedenharn introduced the following
g—commutator:

) Aﬁq A at_oFlats _qEN
[aQ’aq g data 9 %= (@)
However, according to Man’ko [4], the
g-deformed oscillator represents a special
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type of nonlinearity where the frequency
of the oscillator depends on the energy of

the oscillator (i.e., |a|2). In this context, an

f-deformed  oscillator, which is a
generalization of the g-oscillator, was
introduced by Man’ko [5]. The realization
of the f-deformed boson operators éf and

éﬂ; in terms of the undeformed boson

operators a and afwas achieved via the
transformation [4-6]:

af=1f(N)a =f(N+1)a
al =alt(N) =alf(N+1)

where f(N) represents a non-negative

(2)

real operator-valued function of the
number operator. It should be noted that
the subscript “f” used here refers to the “f-
deformation” case. Also, whenever a q-
deformation process is used instead of the
f-deformation process, then the subscript
“f” is interchanged by “q” and vice versa.
The transformation from the f-deformed
oscillator to the g-deformed oscillator or to
the undeformed oscillator involves
substituting specific values for the function

f(N) in the transformation of egn. (2) in
the form [4-6]:

f(N)=
1 for undeformed oscillator
[N,
N for g-deformed oscillator
Otherwise for f-deformed oscillator

where,
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N sinh(AN)
11 sinh(2)
41 = q - q A
for [N11 = ﬁ (4a)
and,
AN
~ e -1
[N e
b et 1
N
~q _ Q- 1
for [N} =
[N, 0
(4b)
Furthermore, the Hamiltonian operators of
the  deformed  quantum  harmonic
oscillators for these two types of
deformation are defined as [4-6, 20, 21]:
i =7 (a af +aTa )
Hq _( > )(aqaq+ qaq (5)
and,
~ ha
"t (7)
2

respectively.

Egn. (5) represents the Hamiltonian

operator of the g-deformed quantum

harmonic oscillator in the g-deformed

Fock space while eqgn. (6) represents the

Hamiltonian operator of the f-deformed

uantum harmonic oscillator in the
eformed Fock space.

The g-deformed number operator, Nq , In

terms of g-deformed boson operators is
defined as [1,15,19]:

el At
Ng =[N]y =444 ()
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A A

[N+1]y =848, @)

Substituting eqns. (7) and (8) in eqgn. (6),
one gets [15]:

Zaslavskii’s Method for Deriving the
Quantum Liouville Equation for the
g-Deformed Oscillator in the
a -Representation

According to Zaslavskii [13], the equation
of motion of an averaged physical quantity

E(a,a”; t) is defined as [13]:

TE@a D) ik i)
qt

(10)

where,

2
k= &0 - |of
ho

Fole 2y Aol )% e
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Hq_(hsz (Mg +[N +11g) (©)

eqn. (9). And according to Sudarshan et al.

[22], one have the  following
correspondence:
af® a*f A 5
Y for H, (o, — 12
a ® 6* q( 805*) (2
oa
and,
a ® afl
" ig for Hq( ,—a)
ox
(13)

Substituting eqns. (12) and (13) into the

expressions  for [N]:] and [I\A|+11q

appearing in K (a , )(see eqgn. (9)),

The Hamiltonian of the g-deformed oa”
quantum harmonic oscillator is given by leads to:
sinh (2 o -2.)
NY= - ST
inh (4 - - q
sinh (1) § for N1, = q q_ : (14)
smh(l(a 2+ 1)) - q
N+ 1], =
N ]:1 sinh(i)
and,
/10,/* 8
oa”
g B -1
[N]q_ e -1 ~ qN- 1
5 for [N]q = (15)
),(a* — +1 q- 1
[N"‘l _ € Oa -1
]q e’1 -1

where, [N]] and [N + 1:[1 given by eqns. (7) and (8). The same method can be used for [N:h

and [N+ 1jh appearing in Hq (a, a) . Now, substitution of [Nh and [N+ 11] from eqgns.
(14) and (15) into eqn. (9), gives:
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%mh(& *i*) sinh(/l(a*i*+ 1))2
(@ =2 ):?ﬁh“)gg el do_"'2 (163)
a\" "ot/ B2 EE sinh (1) sinh(1) ::
]
hence,
~ [« O _aehwgﬁe Jda” -1 oa - 1=
Hole s * ) =
g o’ E2 ”g e -1 e" -1 =
o
(16b)
and,
s&inh(2a-L) sinh(i(a+1))3
. J :(@WOT oo oa T
Hy (e =) T + _ : (17a)
G\" 6a’ & 23§ sinh(2) sinh(2) %
hence,
x ) 0 y) 0
g P 1 e ( 7a+l) IE
A 0 ah woke - - 1=
Holo, —)=—= + :
al aa) ézag 1 N (17b)
[%]

respectively.

Using egns. (16) and (17) in egn. (11),
leads to:

- sinn(ia-2-) sinh(i(a%+1))§

and,

(18b)
respectively.
Then, using the definition of the sine
hyperbolic  function and re-arranging
terms, eqn. (18a) can be cast in the form:
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. ] 2
K= a)(4sinh(/1)) Le Ll

ae,{* 0 %

(1+ ei)Ee oa

- (1+e ’I)EZ- ‘

Similarly, egn. (18b) becomes:

Téq(@.a™t)
qt

= w(4sinh (1)) Le o

® )" 0 ; :
(1+ ei)ge 0a" . ¢ Oaz
&

2
><e| | gq(a,a*,t)
(20b)
respectively,  where  the  function

.ffq (o,a"; t) represents the g-analog of

the averaged physical quantity
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. -1 2
R=wE - 1) e
®la* a iai%i

(1+ ei)Ee _ e Oa %

Eqns (19a) and (19b) can be substituted in
eqn. (10), and after replacing &(a,a”; t)

el

by &4 (o,a"; t), one obtains:
(19a)

E(a,a”; t) appearing in ref. [13]. Also, it
is noted that the function &, (a,a™;1)

reduces to &(a,a”; t) in the limit g —1.

Action of the Dilatation (Shift)
Operators e da’ and e a

on the Function & (a.a;t)

Since the action of the dilatation (shift)
b xi

operator € X on a function F(x)is

given by [23, 24]:
0

e,Ban F(x)=F (xe?)

for any arbitrary constant b=+ 1, and
replacing F(X) by F(a,a”), eqn. (21)
gives:

iia*i* )
e Ja F(a,a")=F(a,e”"a")
and,
+/105i /1
e 00 F(a,a*)= F( a*)
(23)

(19b)

(21)

(22)
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Eqgns. (22) and (23) can be generalized to
the case where the shift operator acts on
the  product of two  functions

F(a,a")G(a,a") (see Appendix).

Using this result, leads to:

iia*i*
e 0" F(a,a*)G(a,a™)=
; iia*i*
F(Ot,ei a*)e 0a G(a,a*)
(24)
and,
ot
Mq(?—ta):(- w)asinh (D) e 1
2& fgt — Yo
Xi(1+ e’I)ee/l'O[| Ee " o eiaaai
} 5
- [+ e ’l)e o
& ia*i iai%l
er oa _ ¢ 3a£%§q(a,a*,t)
(26a)
and,
1&g (a.a’;t .
: (0{ Y iw)(Z(ei- ) e o
I 2& lgf L ., 9
;(1+ e}“)eeﬂa| Ee “ oo . ¢ "0 %
><§q (a,a";1)
(26b)

respectively.

Eqns. (26) represent the quantum Liouville
equations for the g-deformed 1-D quantum

Vol. 19. September, 2016, pp. 53-69

Science

iiai

e o0 F(a,a®)G(ar,a )=

respectively.

Therefore, egns. (20) can be simplified by
using egns. (24) and (25) with

2
F(a,a") = e‘a‘ ,G(a,a”) = S (a,a";t)

and re-arranging to get:

harmonic oscillator in the
o -representation.

. {((x* az* - (Z%)

where,
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22 % A8
Sl(/l): ? + E + ? +
a2 28
A2 A8
83 (/1) = - /1 + ? - a +

Classical Limit of the Liouville
Equation forfq(a,a*;t)in the a-

Representation

Expanding all functions appearing in
egn. (26a) as power series in A, and
simplifying the result, one obtains:

05y (a.a’;t) iw
: ot :_( 4 j((1+sll(/1)))

2 A% 2
(z af +2- 4l +j

(2+5,(1)) e

6@3_ (a,a*;t)__ (ia) ]
ot L4

{{21|a|2(* 0 aj
. e o —Oo—
oa” oa

where (Pgl_(a,a*;t) represents  the

classical probability distribution function.
It should be noticed that the fact that in
this limit Sl(ﬂ,) = 82 (ﬂ) = S3 (ﬂ,) =0
has been used. Re-arranging the terms in
eqn. (29), this equation becomes:

Applying the conditions for classical
limiting namely; h—>0,‘0€‘2—>00 such
that/l‘a‘zﬁﬁnite, to eqn. (28), where
A=(const.)-h (e, 40 as fast as
h—0) and letting
éq(a,a*;t)%@gl_(a,a*;t) in  this

limit, then egn. (27) reduces to:

ot
(. x0 0 q *,
Ly [a Py a@a Pr (a,a™;t)
(30)
where,

a)((q”) =w Cosh(l|a|2)

Eqgn. (30) represents a classical Liouville
?Sg)ation for a classical harmonic oscillator

having frequencya)((ql). By expanding the

frequency of this oscillator a)((ql)up to A2,

eqn. (30) becomes:

(31)
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(32)
Eqgn. (32) can be interpreted as a classical
Liouville equation for a classical harmonic

oscillator with frequency:

2
w((f) =w (l+%|a|4J (33)

Similarly, egn. (26b) gives:

q .
0F (a,a";t) _i®

ot q
« O 0 g *.
.(a ol aaj Pe (a,a™5t)  (34)
2

w&” ) w el|a| (35)
Also, by expanding the frequency, a)&S), of
this oscillator up toA, and applying the

Jn«
-1 1. 7

=L
a.
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same previous mentioned  limiting
conditions, eqn. (34) becomes:

q *
OF, ;

cL(@a™t) . ()

ot q

« O 0 q %

) [a e — a%]@CL (a,a ,t)
(36)

where,
a)((qﬂ) - w(1+/1|a|2) (37)

By using the same technique that was
introduced in Ref. [25], egns. (30), (34)
and (36) can be solved by the method of
characteristics, and the time—evolution of

the classical probability distribution
function can be investigated in the non-
rotating frame in phase space via a
computer visualization method [25]. The
results can then be shown in a
2-dimensional time-evolution contours of
the probability distribution functions

(Pg_(a,a*;t) in phase space. These

probability distributions functions exhibit

whorl shapes and it is obvious that these
whorl shapes become finer as t - o0 as in

Figs. () - (3).
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Also, in Figs (4) - (6), the results of the 3-
D time-evolution of the classical
probability distribution functions

Q’gl_(a,a*;t) are presented in phase

space. From these figures, it can be seen
that these probability distributions appear
as g-deformed Gaussians. It is also clear

Vol. 19. September, 2016, pp. 53-69 Science

from all these figures that the peaks of
these g-deformed Gaussians do not change
with time. These peaks follow the classical
trajectories for the probability distribution
functions shown in Figs. (1)-(3). Another
observation is that the Gaussian shapes of
these  distributions  become  more

convoluted around themselves as t — .
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Fig.(4): The 3-D time-evolution of the classical probability distribution function
@gL (a,a";t) for the g-deformed harmonic oscillator with frequency a)g) given by eqn.

(31) and ¢=0.5 in phase space, for different values of time (7): (a)r=7/2, (b)7 =7,
(c) 7=3x/2,and (d) r=2r.

g 1.0

g 1.0
G, 0.5\

CL o.s\ N
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Conclusions

A number of conclusions can be drawn
from the present investigation as follows:

1. The classical limit of the 1-D g-
deformed quantum harmonic oscillator is
statistical in nature. This is clear from
eqns. (32) and (36) where the classical
Liouville equations are obtained for the 1-
D g-deformed classical harmonic oscillator
in the a -representation. This is
in conformity with the work of Ghosh et
al. [26], where the classical Liouville
equation was obtained for the 1-D classical
simple harmonic oscillator by applying the
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classical limiting conditions 7%—0,

\042 — 0, such that h\a\z — finite .

2. The g-deformed 1-D quantum harmonic
oscillator can be interpreted as a nonlinear
quantum oscillator where the nonlinearity
parameter A depends on the h such that

/’t:(const.)-h. This dependence is

required for the classical limit to exist.
Based on the more detailed approach to the
classical limit adopted in this work, this
interpretation seems to be more accurate
than that introduced by Man’ko [4] where
this oscillator was interpreted as a
nonlinear quantum oscillator with a special
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type of nonlinearity with an energy
dependent frequency.

3. The g-deformation of the 1-D quantum
harmonic oscillator induces a
non-commutative geometry. This can be
understood in the light of Vitiello’s work
[27], where the g-deformation of the
coherent states was studied to find that the
fractal self-similarity obtained by defining
d

a
a fractal operatorq 92 leads to a

non-commutative geometry. The
expression of this fractal operator is
similar to those appearing in the present
work as a dilatation (shift) operators

Mai +a” o

e Oxand e 0a” | These
dilatation (shift) operators are inherent in
the g-deformation and arise naturally in
the quantum Liouville equations given in
eqns. (26), for the g-deformed 1-D
quantum harmonic oscillator in the «-
representation.

4. The behavior of the classical limit of the
quantum Liouville equation for the
g-deformed 1-D quantum harmonic
oscillator in phase space shows whorl
shapes evolving with time as in
Figs. (1)-(3). These figures are similar to
those introduced by Milburn [28] for the
1-D classical anharmonic oscillator. This
similarity results from the fact that the
anharmonicity itself represents a kind of

F(x)= i ag X™ (A1)
m=0

G(x)= 3 by x™ (A2)
m=0

Using these expressions,
F(x)G(x) can be written as:

the product

F(x)G(x) :(a0 + X+ ayX2 +agx° +)

: (b0+blx+b2x2+b3x3+-~-)

(A.3)
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deformation with a frequency which is a
function of. The significance of this
observation lies in the assumption that the
whorl shapes in phase space can be
considered as a generalized phenomenon
whenever the g-deformation is used for
any quantum system with arbitrary
potential.
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Appendix

The action of the dilatation (shift)
operators

0

eillo{a F(a,a*)G(a,a*) and
.o

eilla oa” F(a,a*)G(a,a*)

Assume two functions F(x)and G(Xx)

that have power series expressions of the
form:

Multiplying both sides of egn. (A.3) from
left by the dilatation (shift) operator

0

e OX where S and x are given in eqns.
(21),
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o) s ot

by +bl(eﬁx)+ b, (eﬁx)2

+
QD
N
—_——
D
i)
>
N~
N
VR

2

the result is:

0
Px—
e aXF(x)G(x)

|(3obo +agby X+ aghy X°

0
X_

+a,b3 X3 +)
( 2 3
+( by X+l X= +a4by X7 +
+ays x* +)
+(3.2b0 X2 + azb_l_ X3 + azbz X4
+ayhs X° +)
+(a3bO x3 +aghy x4 +agh, x° +agbs x® +)}
Applying egn. (21) to egn. (A.4) and

simplifying, the result becomes:
0

R (06 (x) =
ao(bo+bl(eﬁx)+b2(eﬂx)2
+b3(e/’)x)3+---j

Collecting similar terms, this gives:
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(A5)

0
Bx—
e OXF(x)G(x)=

(ao + al(eﬂx)+ a, (eﬁx)2 +ag (eﬂx)3 +j

. (bo +bl(eﬂx)+b2(eﬂx)2+b3(eﬂx)3+...j

(A.6)
But since,
F(efx)= S am (e#x " (A7)
(3= 3 aneh
G(efx)= S b efx " (A.8)
() 3l
then, substituting eqgns. (A.7) and (A.8)
into egn. (A.6), one obtains:
0
< (A.4)
eﬂxaxF(x)G(x)z F(eﬁx)G(eﬁx) (A.9)

Using F(x)—>F(a,a*)as given in

eqn. (22) and similarly G(X)—)G(a,a*)
in egn. (A.9), substituting the definition of

[ from eqn. (21) then applying egns. (22),
(23) for F(a,a*) and G(a,a*)

respectively to eqn. (A.9), the results
become:
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