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Abstract 

Let R be an associative ring with identity, and let M be a unitary left R-module. The main 

purpose of this paper is to introduce and study properties of class of modules including lifting 

module. We use the Radical submodule to introduce this class of modules. We start by defining a 

generalized lifting module as a generalization of lifting module, then we give another generalization 

of generalized lifting module we called it cofinitely generalized lifting module. Thus, we give 

characterization and prove some properties of this type of modules.  [DOI: 10.22401/ANJS.00.2.12] 
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1. Introduction 

Let R be an associative ring with identity, 

and let M be a unitary left R-module. It is 

well known that a submodule N of an R-

module M is said to be small in M 

notationally, N  M, if N + L  M for every 

submodule L of M implies L  M [1].  

It is known that Rad (M) is the 

intersection of all maximal submodules of M 

equivalently Rad(M) is the sum of all small 

submodules of M [1]. A module M is said to 

be lifting or (D1), if for every submodule N of 

M there exists a direct summand K ≤ N such 

that 
 

 


 

 
. Lifting modules have been 

studied by several authors among them, K. 

Oshiro [2], Wisbauer [1], P. F. Smith [3] and 

D. Keskin [4]. 

In this work we introduce generalized 

lifting module, cofinitely generalized lifting 

module. We use the concept of Rad(M) to 

introduce a generalized lifting module as a 

generalization of lifting module we prove 

some results of this type of modules. 

Also we introduce cofinitley generalized 

lifting module as a generalization of 

generalized lifting module. We need to add 

certain conditions to prove some properties of 

this type of modules. Among these results we 

get that if M  M1M2, M2 is finitely 

generated and M is a generalized cofinitely 

lifting, then M1 is generalized cofinitley 

lifting. 

 

2. Lifting and Radical lifting modules 

In this section we study Rad-lifting 

module as a generalization of lifting module, 

and some of the properties of this type of 

modules are displayed. 

 

Definition 2.1:  

Let M be an R-module. M is said to be 

Rad-lifting if for every submodule N of M 

there exists a direct summand K of M, K ≤ N 

such that M  KK, K ≤ M and N K ≤ 

Rad(M) 

It is clear that every lifting module is 

Rad-lifting, but the converse is not true in 

general. Q as Z-module is Rad-lifting but not 

lifting. The following theorem gives a 

characterization of Rad-lifting modules. 

 

Theorem 2.2: 

For any R-module M, the following 

statements are equivalent: 

1. M is a Rad-lifting module. 

2.  Every submodule N of M can be written 

as N  A S, where A is a direct 

summand of M and S ≤ Rad (M). 

Proof (1→2): 

Let N ≤ M, Since M is a Rad – lifting 

then there exists a direct summand K of M,  

K ≤ N, hence M  K  K, K ≤ M and  

NK ≤ Rad (M). thus N  KKN, take  

A = N and NK  S ≤ Rad (M). 

Proof (2→1): 

Let N ≤ M, then By (2),N = A  S where 

A is a direct summand of M and S ≤ Rad (M), 

hence M  A  B, B ≤ M, hence A ≤ N and  

BN  BA  BS  BS ≤ S ≤ Rad (M). 

The submodule of Rad-lifting need not be 

Rad-lifting, Z as Z-module of Q as Z- module 
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is not Rad-lifting. However we have the 

following. 

 

Proposition 2.3:  

Let M be a Rad-lifting module, then 

every direct summand of M is Rad-lifting 

module. 

Proof: 

Let N ≤ M such that N ≤ M, then there 

exists a direct summand K of M such that  

M  N  K and let L ≤ N then L ≤ M, since 

M is Rad-lifting, then there exists L ≤ L such 

that M  LL, L ≤ M, and LL ≤ Rad 

(M),hence NM  N  L N L, N  L 

N L, and N  LL ≤ N  Rad(M)  

Rad(N) by [5]. 

 

Proposition 2.4:  

Let M  M1 M2, be a Rad-lifting 

module, then M1 and M2 are Rad-lifting 

module. 

Proof: 

Let N1≤ M1, then N1 ≤ M Since M is a 

Rad-lifting module, then by theorem [2.2 ], 

N1= A  S, where A is a direct summand of 

M and S ≤ Rad (M). Now M  A  B, B ≤ M, 

hence M1  M1 M  A  M1  B  M1, 

then A  M1 ≤ M1, and M1  S ≤ M1  Rad 

(M)  Rad (M) by [5].Similarly for M2. 

Recall that a submodule N of M is called fully 

invariant if f(N) ≤ N for every f  End (M). 

[10], and an R-module M is called a duo 

module if every submodule of M is fully 

invariant [10].  ■ 

 

Proposition 2.5:  

Let M  M1  M2, be a duo module if M1 

and M2 are Rad-lifting module, then M is 

Rad-lifting module. 

Proof: 

Let N≤ M, then N  N  M1 N  M2, 

by (proposition 2.1.10) N  M1≤ M1, N  M2 

≤ M2. Since M1 and M2 are Rad-lifting 

modules, then N  M1  A1 S1, A1 ≤ M1, 

M1  A1 B1 and S1 ≤ Rad (M1), and N  M2 

 A2 S2, A2 ≤ M2, M2  A2 B2 and S2 ≤ 

Rad (M2). Now M  N  M1 N  M2  

(A1 S1)  (A2  S2). Thus M  (A1  A2)  

(S1 S2). Thus (A1 A2) ≤ M and (A1A2) 

≤ M and (S1 S2) ≤ Rad (M1)  Rad (M2)  

Rad (M) therefore M is Rad-lifting module.  ■ 

Corollary 2.6: 

Let M  M1 M2 … Mn be a duo 

module. If Mi is Rad-lifting module for all  

i  1, 2, …, n, then M is a Rad-lifting module. 

Proof: Clearly.  ■ 

 

Proposition 2.7:  

Let M be a Rad-lifting module, let N be a 

fully invariant submodule of M, then 
 

 
 is 

Rad-lifting module. 

Proof: 

Let 
 

 
 ≤ 
 

 
, then K≤ M, hence K  A  S 

where A is a direct summand of M, i.e., M  

A  B, B ≤ M and S ≤ Rad(M), thus 
 

 
  

   

 
 =

   

 

   

 
  and 

 

 
 =  

  

 
 =  

   

 

   

 
, 

hence  
   

 
 ≤

 

 
 and 

   

 
 ≤ 

   (   )   

 
 ≤ 

Rad (
 

 
).  ■ 

 

Corollary 2.8: 

The homomorphic image of a duo Rad-

lifting module is Rad-lifting module. 

Proof: Clearly By prop.2.7.  ■ 

 

Corollary 2.9: 

Let M be an R-module with Rad (M)  

M. Then M is lifting if and only if M is Rad-

lifting module. 

 

It is known that every semi-simple 

module is Rad-lifting module, but the 

converse in general is not true. For example Q 

as Z-module is a Rad-lifting module, but not 

semi-simple. 

The following result gives a certain 

condition on Rad-lifting module to be semi-

simple module. 

 

Proposition 2.10: 

Let M be a Rad-lifting module with Rad 

(M)  0. Then M is a semi-simple module. 

Proof: 

Let N ≤ M. Since M is Rad-lifting 

module then there exists a submodule K ≤ N 

such that M 6 K K, K ≤ M and N K ≤ 

Rad (M). 0, hence M N  Ki.e: N ≤ M. 

Then M is a semi-simple module. 
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3. Cofinitely generalized lifting modules: 

In this section we introduce a cofinitely 

generalized lifting module as a generalization 

of Rad-lifting (generalized lifting) modules, 

some of the properties of this type of modules 

are discussed. 

 

Definition 3.1: 
Let M be an R-module. M is called 

cofinitely generalized lifting (briefly C. G. 

lifting) module if for every cofinite 

submodule N of M, i.e., 
 

  
 is finitely 

generated there exists a submodule K of N 

such that M  K  K and N  K ≤ Rad(M). 

 

Theorem 3.2: 

Let M be an R-module. The following 

statements are equivalent: 

1. M is C.G.lifting. 

2. Every cofinite submodule N of M can be 

written as N  A  S, where A is a direct 

summand of M and S ≤ Rad(M) and 
 

  
 cofinite submodule of 

 

 
. 

3. Every cofinite submodule N of M, then 

there exists a direct summand K of M, 

such that K ≤ N and 
 

 
     (

 

 
). 

Proof (1→2): 

Let M be a C. G. lifting module and let N 

be a cofinite submodule of M. Then there 

exists a submodule K of N, such that M  K 

 K, K≤ M, and N  K≤ Rad(M), N  N  

M  N  (K  K)  K  (N  K) 

by(modular law) take A  K and S  N  K≤ 

Rad(M). Now 

 

 
 

 

  
 

 
 but 

 

 
 is finite generated, 

therefore 

 

 
  

 

 is finite generated. Thus 
 

 
 is 

cofinite submodule in 
 

 
. 

Proof (2→3): 

Let N be a cofinite submodule of M. 

Then 
 

 
 is finite generated By (2), N  A  S 

where A is a direct summand of M and  

S ≤ Rad(M). 

 

 
 

 

 
 

  
 is finite generated, then 

N is cofinite in M. A ≤ M, therefore M  A 

 K, A ≤ N, take A  K, Now N  K. N  

M  (A K)  N  A  (N K) 

therefore 
 

 
 N  K, we want to show that 

 

 
 Rad (

 

 
). 
 

 
= 
   

 
 

 

   
  S ≤ Rad (M)  

 Rad(
 

 
) Thus 

 

 
  Rad(

 

 
). 

Proof (3→1): 

Let N be a cofinite submodule of M. 

Then there exists a cofinite submodule K of 

M, such that M  K  K, K≤ M, with 
 

 
 Rad (

 

 
). To prove NK ≤ Rad(M). N  

K  (N  K), then 
 

 
  N  K, but 

 

 
 Rad 

(
 

 
), therefore N K ≤ Rad (M).  ■ 

 

Remark and Examples: 

1- Every semi-simple module is C. G. lifting. 

2- It is clear that every lifting module is C. G. 

lifting. 

3- Every hollow module is C. G. lifting, but 

the converse is not true in general. 

Consider Q as Z-module, since the only 

cofinite submodule of Q is Q, hence Q is 

C. G. lifting. but not lifting. 

4- Every uniserial module is C. G. lifting 

module. In particular ZP is a C. G. lifting 

as Z-module. Since every uniserial module 

is hollow module, and hence it is C. G. 

lifting. 

5- Every local module is C.G. lifting module. 

6- If every proper cofinite submodule of M is 

small in M, Then M is C. G. lifting 

module. Let N be a cofinite proper 

submodule of M. Therefore N  M, then 

N ≤ Rad(M). 

Then there exists 0 ≤ N such that 0  M 

 M. M N  N≤ Rad (M). Thus every 

cofinite hollow module is C. G.-lifting. 

7- Z as Z-module is not C. G. lifting module.  

8- Let M  Z8 Z2 be a module. Let N  

{( ̅, ̅),( ̅, ̅),( ̅, ̅),( ̅, ̅)}. The only direct 

summand of M contained in N is {( ̅, ̅)}. 

If M is C. G. lifting then N  A  S where 

A is a direct summand of M and S ≤ 

Rad(M), if A  0, then N  S. Therefore N 

is not small in M [since N+Z ( ̅,  ̅)  M ]. 

Hence M is not C. G. lifting. 

 

Remark 3.4: 

A submodule of C. G. lifting module is 

not necessary be C. G. lifting module Q as Z-

module is C. G. lifting, but Z as Z- module is 

not C. G. lifting module. The following gives 
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a certain condition on submodule of C. G. 

lifting module to be C. G. lifting module. 

 

Proposition 3.5: 

Let M  M1 M2 be an R-module, where 

M2 is finitely generated and M is C. G. lifting 

module then M1 is C. G. lifting. 

Proof: 

Let M be a C. G. lifting module and let  

M  M1  M2.To prove M1 is C. G. lifting, let 

N be a cofinite submodule of M1. Then N ≤ 

M. Then N = A  S where A is a cofinite 

direct summand of M and S ≤ Rad (M), 

therefore M  A  L,L ≤ M, 
  

 
 is finitely 

generated.

 

 
  

 

 
 

  
  M2 is finitely generated 

and 
  

 
 is finitely generated implies  

 

  
is 

finitely generated. To prove A is a direct 

summand of M1. M1  M1M  M1(AL) 

 A (M1L). Hence M1is C. G. lifting 

module generated. Implies that 
 

 
 is cofinite in 

 
  

 
.  ■ 

 

Corollary 3.6:  
Let M be a C. G. lifting module and let N 

be a cofinite direct summand of M, then N is 

C. G. lifting.  

Proof: 

Clearly By proposition 3.5.  ■ 

 

Proposition 3.7: 

Let M be a duo module, if M  M1  

M2.and for all i  1,2. M1 and M2 are a C. G. 

lifting module. Then M is a C. G. lifting 

module  

Proof: 

Let N ≤ M with N is cofinite in M, and 

since M is duo module thus, N  N  M1  N 

 M2   
  

 
 + 

    

 
 hence 

  

    
  is finite 

generated thus, N  M1 ≤ M1 and N  M2≤ 

M2, then by assumption there exists K1≤ N  

M1 and K2 ≤ N  M2 such that M1  K1  L1, 

L1 ≤ M1, and N  M1  L1 ≤ Rad (M1) and 

for M2   K2, L2  M2, such that M2K2L2, 

L2 ≤ M2, and NM2L2 ≤ Rad (M2), thus N  

NM1 NM2.Thus M  M1M2  K1+K2 

 L1 +L2, K1 + K2 ≤ NM1  NM2  N 

and N(L1 + L2)  (NM1  NM2)(L1 + 

L2)  (NM1)  L1 (NM2)  L2 ≤ Rad 

(M1)Rad (M2)Rad (M) by [5].  ■ 

 

Corollary 3.8: 

Let M be a duo of an R- module. If M  

M1 M2 …  Mn and for all i = 1, 2, …, n, 

Mi is C. G. lifting. Then M is C. G. lifting 

module. 

 

Now we will consider the following 

properties: 

(CD2): For any cofinite submodule N of M, 

for which  
 

 
 isomorphic to a direct summand 

o f M. Then N is a direct summand of M. Q as 

Z-module has (CD2) property since Q is the 

only cofinite submodule of Q. 

(CD3): If K1,K2 are cofinite direct summand 

of M with M  K1+K2 then K1K2 is also a 

direct summand of M. It is clear that Z6 as Z - 

module has (CD3) property.  

 

Definition 3.9: 

Let M be an R-module. M is called 

cofinitely discrete if it is C. G. lifting and 

CD2. And M is called cofinitely quasi-discrete 

(briefly C. quasi discrete) if M is C. G. lifting 

and CD3. 

 

Proposition 3.10: 

Let M be an R- module, with (CD2) 

property. Then M has CD3 property. 

Proof: 

Let A, B be a cofinite direct summand of 

M. Such that M  A + B. To show that A  B 

is a direct summand of M. Since A ≤ M and 

B ≤ M then there exist A, B, such that M  

A  A  B  B.Then A   
 

 
  

   

 
 

 

   
  

    

   (  )
 (by 2

nd
 isomorphic theorem). 

To prove That A  (B  B).is cofinite in M. 

Since A
    

 (   )
  

 

 
 is finitely 

generated,then 
    

 (   )
 is finitely generated,it 

is implies that A  (B  B) is cofinite 

submodule in M ;but M has CD2, A  (B  

B) ≤ M, but A  B≤ A  (B  B) ≤ M, 

therefore A  B ≤ M. Thus M has CD3.  ■ 

 

Remark 3.11:  
Let M be an R- module, then:  
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M is C. discrete → M is C. quasi-discrete 

→ M is C.G.lifting module. 

  

Remark 3.12: 

Let M be a C. G. lifting module in which 

every cofinite submodule N of M is a direct 

summand of M. Then M is C. discrete. 

Proof: 

Let N ≤ M.Such that 
 

 
 is finitely 

generated, then there exists a submodule L of 

M such that M  N  L. therefore  
 

 
  L, 

hence M has CD2.  ■ 
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