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Abstract 

In this paper we will discuss the mixture distribution consisting of two Inverse Exponential 

Distributions (MTIED) based on fuzzy data. We will study the Maximum Likelihood Estimator 

(MLE) via the Newton Raphson (NR) algorithm and Bayes estimation under square error loss and 

quadratic loss functions for the unknown parameters of the distribution, and reliability function. The 

obtained estimates of the unknown parameters and reliability function are compared numerically 

through Monte-Carlo simulation study in term of the mean square error (MSE) values and (IMSE) 

respectively.  [DOI: 10.22401/ANJS.00.2.11] 
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1. Introduction 

Finite mixture models play an important 

role in many applicable fields, such as 

economics, medicine, psychology, life testing, 

reliability analysis and etc., [12]. Several 

researches have assumed that the underlying 

population is a homogeneous one with the 

failure time distribution given by      , 

where the form F is known but the parameter 

  is unknown, [11]. 

Many authors interested with inferences 

on mixtures of exponential distributions and 

among them Jaheen [7] and Everitt and Hand 

[6]. Also, Elsherpieny [5] estimated the 

parameters of mixed generalized 

exponentially distributions. 

The past experience as well as 

experimental constraints may suggest that the 

assumption of homogeneity may not hold and 

the underlying population may consist of 

several subpopulation, say               

mixed in proportion;           . 

Further, cumulative distribution function 

in each subpopulation is given 

by  (    )         with p.d.f.’s          

respectively [10]. 

Inverse Exponential distribution is also 

known as reciprocal exponential distribution 

finds use in the analysis of fading wireless 

communication systems. 

The mixture of two Inverse Exponential 

distributions (MTIES) has its p.d.f. as: 

                                …(1) 

                              

where        , the density function of the i
th

 

component (inverse exponential), is given by: 

         
  

   
                      

 …(2) 

The cumulative distribution function 

(CDF) of the MTIED is given by:  

                                  
 …(3) 

where         , the c.d.f. of the i
th

 component, 

is given by:  

                                
 …(4) 

The reliability function at time t is given 

by: 

       (        )    (        )      

 …(5) 

Note that the mean of the p.d.f. of the 

MTIED given in (1) and (2) does not exist. 

The inverse Generalized Exponential and the 

inverse Weibull distributions are both the 

generalization of an inverse exponential 

distribution [8]. 

Usually, it is assumed that an observed 

data are precise (exact) numbers. However, in 

real world situations, some collected data 

might be imprecise and are represented in the 

form of fuzzy numbers. The first publications 

in fuzzy set theory by Zadeh [13]. 

Thus, this paper focused on evaluate the 

estimating the unknown parameters and 

reliability function of MTIED through the 

methods (MLE, Bayes) based on fuzzy data 
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and presenting a comparative study for 

estimating. 

 

2.Maximum Likelihood Estimators  

Let                be an i.i.d. 

random vector of a random sample of size n 

from MTIED with p.d.f. given by (1).If a 

realization of   was known exactly, then the 

complete data likelihood function is: 

  (     | )  ∏             
 
     

 ∏ *
    

  
       

        

  
      + 

     

 …(6) 

Now, suppose that   is not observed 

precisely and only partial informations about 

  are available in the form of fuzzy subset  ̃ 

with the Borel measurable membership 

function   ̃   , so we can compute its 

probability according to Zadeh’s definition of 

the probability of a fuzzy event  ̃ in   , 

which is defined as the expectation of the 

membership function  ̃ with respect to p, 

[14]: 

 ( ̃)  ∫  ̃               

The observed-data likelihood function 

can then be obtained as: 

 (     | ̃)  ∏ ∫ *
    

       ⁄   
   

        

  
     ⁄ +    ̃

       …(7) 

and the observed –data natural log-likelihood 

function will be: 

    (     | ̃)  ∑    
   ∫ *

    

       ⁄  
        

  
     ⁄ +    ̃

     ..(8) 

assuming that the parameters    and    are 

unknown and P is known. 

Differentiating the natural Log-likelihood 

function  (     | ̃), given by equation (8), 

partially with respect to   ,    and then 

equating to zero, we have: 

     (     | ̃)

   
 ∑

∫*
  
    

    ⁄  
    
       ⁄ +   ̃

     

∫*
    
       ⁄  

        
       ⁄ +   ̃

     
   

     

     (     | ̃)

   
 ∑

∫*
      

       ⁄  
        

       ⁄ +   ̃
     

∫*
    
       ⁄  

        
       ⁄ +   ̃

     
   

    …(10) 

 

The solution of the two nonlinear 

Likelihood equations (9) and (10) yields the 

MLEs of    and    respectively.Since there 

are no closed forms of the solutions, iterative 

approximation techniques can be used to 

obtain the MLEs.  

In the following, we consider iterative 

approximation techniques namely Newton-

Raphson (NR) algorithm to determine the 

MLEs of the parameters    and   . 

 

Newton-Raphson (NR) Algorithm: 

In this algorithm, the solution of the 

Likelihood equation is obtained through an 

iterative procedure. 

Step (1): Let   
   

 and   
   

 starting values of 

   and   when h  0. 

Step (2): At iteration      , estimate the 

new value of    and   , as: 

[
 ̂ 

     

 ̂ 
     

]  [
 ̂ 

   

 ̂ 
   

]   

[

   

   
 

   

      

   

      

   

   

]

    ̂ 
   

    ̂ 
   

  

[

  

   

  

   

]  …(11) 

where the first-order derivatives of the natural 

Log-Likelihood with respect to the parameters 

   and   , required for proceeding with the 

NR-algorithm, are obtained as in the equation 

(9) and (10) and the second-order derivatives 

are obtained, as follows: 

   (     | ̃)

   
  ∑

∫*
    
       ⁄  

    
       ⁄ +   ̃

     

∫*
    
       ⁄  

        
  

     ⁄ +   ̃
     

 
   (

∫*
  
   

    ⁄  
    
       ⁄ +   ̃

     

∫*
    
       ⁄  

        
       ⁄ +   ̃

     
)

 

  

 …(12) 
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   (     | ̃)

      
 ∑

(∫*
  
   

    ⁄  
    
       ⁄ +   ̃

     )

(∫*
    
       ⁄  

        
       ⁄ +   ̃

     )
   

     

(∫ *
    

  
     ⁄  

        

  
     ⁄ +    ̃

     ) …(13) 

   (     | ̃)

   
  ∑

(∫*
        

       ⁄  
        

       ⁄ +   ̃
     )

(∫*
    
       ⁄  

        
       ⁄ +   ̃

     )

 
     

   (
∫*

      

       ⁄  
        

       ⁄ +   ̃
     

(∫*
    
       ⁄  

        
       ⁄ +   ̃

     )
)

 

  …(14) 

 

Step (3): Repeat step (2) until convergence 

occurs, i.e., | ̂ 
       ̂ 

   
|  | ̂ 

      

 ̂ 
   

|     for some pre-fixed    . When 

the convergence occurs then the current 

 ̂ 
     

 and  ̂ 
     

 represent the maximum 

Likelihood estimate of    and    via NR 

algorithm which we referred to as  

( ̂    
     ̂    

   ). 

In the following, we provide Bayesian 

estimations of the parameters of MTIED 

when the available data are in the form of 

fuzzy numbers. 

 

3. Bayes Estimations of the Parameters 

For a Bayesian estimation of the 

unknown parameters, we need prior 

distributions for these parameters. Consider 

the prior distributions of    and    of MTIED 

are taken to be independent Gamma     and 

Gamma       respectively with p.d.fs. 

       
  

    
  

                      

 …(15) 

       
  

    
  

                      

 …(16) 

leads to a joint prior distribution of    and    

of the form: 

                       

 
    

        
  

     
  

     
             

 …(17) 

The joint posterior density function of    and 

   given fuzzy data can be obtained by 

combining (7) and (17) 

∏(     | ̃)  
 (     | ̃)

∫ ∫  (     | ̃)           

  

where: 

 (     | ̃)   (     | ̃)          

 
    

        
  

       
                   

∏ ∫ *
    

       ⁄      
   

    
  

  
     ⁄ +    ̃

       

 …(18) 

The squared error loss function (SELF) 

was proposed by Legendre (1805) and Gauss 

(1810) in order to develop least square theory. 

The formula of this loss function for   is, [1] 

 (   ̂)  ( ̂ )
 
 …(19) 

according to eq.(19), Bayes estimator of   

based on SELF is obtained by: 

 ̂   ( | ̃) …(20) 

So, Bayes estimation of any function of 

the parameters, say         , under a 

squared error loss function,  ̂         , can 

be written as: 

 ̂            ( (      | ̃))  

∫ ∫          (     | ̃)       
 
 

 
 

∫ ∫  (     | ̃)       
 
 

 
 

  …(21) 

Note that, Bayes estimators in (21) is of 

the form of ratio of two integrals, which 

cannot be simplified in to a closed form. 

However, we can approximate this Bayes 

estimator into a form containing no integrals 

by using the Lindley’s approximation form. 

 

Lindley's Approximation:  

 ( (      | ̃))

 
∫ ∫          

 (      | ̃)               
 

 

 

 

∫ ∫   (      | ̃)               
 

 

 

 

  

 …(22) 

where: 

         is a function of    and    only, 

 (     | ̃) is natural Log-Likelihood 

function defined by (8),          is natural 

Log-joint prior density function. 
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Now, according to Lindley, for 

sufficiently Large sample size, the ratio of 

integral  ( ̃)   ( (      | ̃)) appears in 

equation (22) can be written as, (see [2], [9]) 

 ( ̃)   ̂  
 

 
[( ̂    

   ̂  
 ̂  

) ̂    
 

( ̂    
   ̂  

 ̂  
) ̂    

 ( ̂    
 

  ̂  
 ̂  

) ̂    
 

( ̂    
   ̂  

 ̂  
) ̂    

]  
 

 
[( ̂  

 ̂    
 

 ̂  
 ̂    

)( ̂      
 ̂    

 

 ̂      
 ̂    

  ̂      
 ̂    

 

 ̂      
 ̂    

)  ( ̂  
 ̂    

 

 ̂  
 ̂    

)( ̂      
 ̂    

 

 ̂      
 ̂    

  ̂      
 ̂    

 

 ̂      
 ̂    

)]  …(23) 

where  ̂  and  ̂  are the MLE's of    and    

respectively,     is the         elements of 

matrix *   
   (     | ̃)

      
+
  

           . 

Subscripts       refer to       respectively, 

and: 

 ̂  
 

  

   
|    ̂ 

    ̂ 

   ̂    
 

   

      
|    ̂ 

    ̂ 

   

 ̂    
 

   

   
 |    ̂ 

    ̂ 

   ̂  
 

  

   
|
    ̂ 
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 ̂    
 

   

      
|
    ̂ 

    ̂ 
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 |    ̂ 

    ̂ 

   

 ̂  
 

           

   
|
    ̂ 

    ̂ 

 
   

  
      

 ̂  
 

           

   
|
    ̂ 

    ̂ 

 
   

  
     

Now: 

 ̂    
 

   (     | ̃)

   
 |

    ̂ 

    ̂ 

 as in (12) 

 ̂    
 

   (     | ̃)

      
|    ̂ 

    ̂ 

  ̂    
 

   (     | ̃)

      
|    ̂ 

    ̂ 

 as in (13) 

 ̂    
 

   (     | ̃)

   
 |

    ̂ 

    ̂ 

 as in ( 14) 

 ̂      
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 |

    ̂ 

    ̂ 
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       ⁄ +   ̃
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 …(24) 
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 (∫ [
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 …(27) 

 

3.1 Bayes estimation based on square error 

loss function: 

The two parameters    and    and 

reliability function can be estimate by using 
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Lindely approximation from eq. (23), as 

follows: 

 

Approximate Bayes Estimate of    based on 

SELF: 

Assume that   in (23) equal to 

             and then: 

   
        

    
      

      
 

     
     

Now, Bayes estimate of    based on 

SELF according to Lindley's approximation 

referred to as  ̂   

 
 can be obtained by the 

following expression, 

 ̂   

 
  (  | ̃) …(28) 

 

Approximate Bayes Estimate of    based on 

SELF: 

Assume that   in (23) equal to 

            , and then: 

   
        

    
      

      
 

     
     

Now, Bayes estimate of    based on 

SELF according to Lindley's approximation 

referred to as  ̂   

 
, can be obtained by the 

following expression: 

 ̂   

 
  (  | ̃) …(29) 

 

Approximate Bayes Estimate of      based 

on SELF: 

Assume that   in (23) equal to: 

                

    (       ⁄ )        (  

      ⁄ )  

and then: 

   
 

  

 
     ⁄       

 
   

  
     ⁄   

   
 

      

 
     ⁄       

 
       

  
     ⁄    

     
      

    

Now, Bayes estimate of     based on 

SELF according to Lindley's approximation, 

referred to as  ̂  
    , can be obtained by the 

following expression: 

 ̂  
      (    | ̃) …(30) 

 

3.2 Bayes estimation based on quadratic loss 

function: 

De Groot (1970) [4] discussed different 

types of loss function and obtained the Bayes 

estimates based on quadratic loss function 

      which is defined as: 

 (   ̂)  (  
 ̂

 
)  …(31) 

According to eq. (31), Bayes estimator of   

based on QLF is obtained by [3]: 

 ̂   
 (

 

 
| ̃)

 (
 

  | ̃)
  …(32) 

Bayes estimate of scale parameters       

and reliability function     based on QLF can 

be obtained as follows: 

 

Approximate Bayes Estimate of    based on 

QLF: 
For the estimation of the scale parameter 

   of MTIED based on quadratic loss 

function according to Lindley’s 

approximation referred to as     
 

 can be 

obtained by the following expression, 

 ̂   

 
 

 (
 

  
| ̃)

 (
 

  
 | ̃)

 …(33) 

Put   in (23) equal to: 

1)           
 

  
, and then    

 
  

  
 , 

     
 

 

  
 ,    

      
      

 

     
    

2)            
 

  
 ,and then    

 
  

  
 , 

     
 

 

  
 ,    

      
      

 

     
    

 

Approximate Bayes Estimate of    based on 

QLF: 

For the estimation of the scale parameter 

   of MTIED based on quadratic loss 

function according to Lindley’s 

approximation referred to as     
 

 can be 

obtained by the following expression: 

 ̂   

 
 

 (
 

  
| ̃)

 (
 

  
 | ̃)

  …(34) 

Assume that   in (23) equal to: 

1)           
 

  
, and then    

 
  

  
 , 

     
 

 

  
 ,    
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2)            
 

  
 ,and then    

 
  

  
 , 

      
 

 

  
 ,    

      
      

 

     
    

 

 

Approximate Bayes Estimate of      based 

on QLF: 

For the estimation of      of MTIED 

based on quadratic loss function according to 

Lindley’s approximation referred to as       
  

can be obtained by the following expression, 

 ̂     
  

 (
 

    
| ̃)

 (
 

(    )
 | ̃)

 …(35) 

Assume that   in (23) equal to: 

1)           
 

    
, and then 
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4. Simulation Study and Results 

We obtained, in the above section, MLEs 

and Bayesian estimates of two parameters  , 

  and reliability function      for mixture of 

MTIED. We can obtain Bayes estimation 

based on square error loss function (LS-NR) 

and quadratic loss functions (LQ-NR).The 

MLEs are obtained as well via the Newton-

Raphson (NR) algorithm. The following 

algorithm will be used to generate the 

samples, each observation of the generated 

samples was made to be fuzzy observation 

and then calculate the estimators:  

1. We have generate       i.i.d. random 

samples from the (MTIED) with different 

sample sizes             for first 

subpopulation and             for 

second subpopulation where        , 

i.e.,               represent small, 

median and large sample sizes 

respectively, through the adoption of 

inverse transformation method with scale 

parameters          for first 

subpopulation and           for second 

subpopulation and   
  

 
. 

 

Table (1) 

Parameter choices for mixture two inverse exponential distributions 

Case       

1 0.5 0.5 

2 0.5 0.6 

3 1 0.5 

4 1 0.6 

 

2. Then, by employing fuzzy information 

system { ̃   ̃   ̃   ̃ } corresponding to the 

following membership functions that 

shown in figure (1), each observation of 

the generated samples was made to be 

fuzzy observation. 
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FIS used to encode the Simulated Data. 

  ̌ 
    {

        
   

   
         

       

  

  ̌ 
    {

     

   
         

     

   
         

       

  

  ̌ 
    {

   

   
         

   

   
         

       

  

  ̌ 
    {

     

   
          

      
       

  

3. In order to deal with non-informative 

gamma priors, the hyper parameters are 

chosen to be respectively,       
           .  

4. The initial values which required for 

proceeding algorithm are used to be 

symmetrical rank regression estimators. 

The iterative process stops when the 

absolute difference between two 

successive iteration becomes less than  
      . 

5. The obtained Bayes estimates of the 

parameters    and    were compared 

based on average values from Mean 

Square Error (MSE) whereas the obtained 

Bayes estimates of the reliability function 

were compared based on average values 

from Integrated Mean Square Error 

(IMSE), where: 

     ̂   
∑ ( ̂    )

  
   

 
  

     ̂   
∑ ( ̂    )

  
   

 
  

    ( ̂   )  
 

 
∑ (

 

  
∑  ̂      

  
   

 
   

     )  

6. The simulation program has been written 

by using MATLAB (R2010b) program and 

the computational results have been 

summarized in the tables (2)…(4). 

 

5. Conclusions and Recommendations 

 Results in tables (2,3,4) appears that the 

MSE and IMSE values are decreasing as 

the sample sizes increasing. 

 Tables (2,3) indicate that the MLE based 

on NR algorithm introduced the best 

perform “smallest MSE values “comparing 

with the Bayes estimates under square 

error loss function(LS-NR) and the Bayes 

estimates under quadratic loss functions 

(LQ-NR) for (MTIED) with all sample 

sizes and four different cases. 

 Table (2) increase the value of the scale 

parameter for first subpopulation 

from        to      , increasing the 

values MSE. 

 Table (3) increase the value of the scale 

parameter for second subpopulation, from 

        to        , increasing the 

values MSE associated with MLE based on 

NR algorithm and LS-NR. 

 Table(4) indicate that the IMLE based on 

NR algorithm introduced the best perform 

comparing with LS-NR and LQ-NR for 

small sample size As well as for moderate 

sample size for all cases 

expect     ,        

Based on conclusions stated above, for 

estimating the parameters of (MTIED), we 

recommend choosing the MLE based on NR 

algorithm for estimating the parameters 

whereas for estimating the reliability function 

choosing the LS-NR for large sample sizes. 
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Table (2) 

MSE values of the estimates of     for different samplesizes. 

Case 
Estimate 

Sample sizes 
 ̂    

     ̂   

 
  ̂   

 
 

1 

30 0.0233932 0.2005009 0.0991962 

60 0.0183723 0.0806426 0.0578716 

150 0.0163274 0.0294155 0.0404439 

2 

30 0.0158582 0.0459260 0.1170193 

60 0.0121490 0.0240735 0.0818985 

150 0.0106996 0.0184793 0.0289910 

3 

30 0.2466995 0.6436168 0.6857820 

60 0.2360822 0.4862397 0.6218401 

150 0.2213613 0.4511455 0.5171946 

4 

30 0.2102429 0.9497045 0.5782250 

60 0.2082938 0.5096119 0.5422214 

150 0.2043110 0.3965683 444185440 
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Table (3) 

MSE values of the estimates of     for different sample sizes. 

Case 
Estimate 

Sample sizes 
 ̂    

     ̂   

 
  ̂   

 
 

1 

30 0.0244574 0.1348539 0.0908540 

60 0.0183518 0.0808005 0.0598297 

150 0.0163358 0.0295862 0.0403106 

2 

30 0.0457090 0.0881518 0.1482921 

60 0.0421992 0.0756958 0.1177494 

150 0.0393457 0.0730716 0.0938337 

3 

30 0.0178490 0.2143132 0.1053265 

60 0.0083644 0.0280595 0.0602245 

150 0.0030963 0.0068288 0.0078554 

4 

30 0.0231579 1.1713622 0.0860626 

60 0.0091552 0.0918873 444180440 

150 0.0052717 0.0097797 444254522 

 

Table (4) 

IMSE values of the estimates of      for different sample sizes. 

Case 
Estimate 

Sample sizes 
 ̂     

    ̂     
   ̂     

  

1 

30 0.0044231 0.1891220 0.0600726 

60 0.0033442 0.1375865 0.0599771 

150 0.0029349 0.0019619 0.0598943 

2 

30 0.0048832 0.0044912 0.0698393 

60 0.0041619 0.0028614 0.0697503 

150 0.0037947 0.0025382 0.0696669 

3 

30 0.0085685 0.3069143 0.1078105 

60 0.0071472 0.0074717 0.1077407 

150 0.0070861 0.0060068 0.1075071 

4 

30 0.0084504 122.271391 0.1207336 

60 0.0080880 0.0787380 0.1206186 

150 0.0073630 0.0063894 442240804 
 


