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Abstract 

This paper aims to focus on Bayes estimations for the shape and scale parameters along with the 

reliability function of weighted exponential distribution with fuzzy data. Bayes estimations have 

been obtained using symmetric and asymmetric loss functions. Lindley's approximation method has 

been used for the integrals that cannot be solved in closed form. At the end, some comparison for 

Bayes estimations are studied through a Monte Carlo simulation study.  [DOI: 

10.22401/ANJS.00.1.24] 
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1. Introduction 

Based on the idea of Azzalini [3] who 

introduced the shape parameter for several 

symmetric distributions, Gupta and Kundu in 

(2009) [4] presented a shape parameter to an 

exponential distribution which belongs to 

asymmetric distributions and thus got a new 

class of distribution named weighted 

exponential distribution that provides, in 

several cases, better fit than Weibull, gamma 

or generalized exponential distributions.  

The probability density function (pdf) of 

weighted exponential (from now, we will 

symbolize it by   )  distribution is given by 

[4]: 

   (     )  
   

 
       (       )           ........... (1) 

for     and zero otherwise, where    is the 

shape parameter and   is the scale parameter. 

The corresponding cumulative distribution 

function of    distribution is given by [2]: 

   (     )     
 

 
      (         )  

 ............ (2) 

The reliability function of    distribution 

at time ( ), can be obtained by: 

   (     )     (     )  
 

 
      (  

        )        .................................... (3) 

The hazard function at time ( ), is given 

by [7]: 

   (     )  
   (     )

   (     )
 

 
(   )   (       )

            
          ........................... (4) 

Recently, the    distribution has received 

many attentions in the statistical literature. 

Most of this literature focused on estimation 

the unknown parameters according to the non-

Bayes methods, for example, method of 

maximum likelihood, method of moments, or 

according to the method that need to 

preliminary information for estimating after 

relying on prior distribution (i.e., Bayes 

estimation) based on real (precise) and 

censored data. However, in real situations all 

observations or data are not precise numbers 

but more or less non-precise, also called fuzzy. 

So, this paper deals with the fuzzy data in 

order to estimate the unknown parameters and 

reliability function of    distribution 

according to Bayes estimation method. 

 

2. Bayes Estimations with Fuzzy Data 

In this section we considered Bayes 

estimation theory to estimate the shape and 

scale parameters along with the reliability 

function of    distribution when the available 

data are shown in the form of fuzzy data.  
 

Definition [9]:  

A fuzzy set   ̃ in   is a set of ordered pairs: 

 ̃  {(    ̃( ))    }, where    is a 

collection of objects with universal element  , 

  is a subset of a set   and   ̃( ) is the 
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membership function of   in   ̃ which maps   

to the membership space M,   ̃( )    
[   ]. (When M contains only two points 0 and 

1,   ̃ is non-fuzzy (crisp) and   ̃( ) is 

identical to the characteristic function of a 

non-fuzzy set).  

In general, we can define fuzzy set as a set 

included elements have a membership varying 

degrees in the set. Classical (crisp) sets allow 

only full membership or no membership at all, 

while fuzzy sets allow partial membership. 

Now, assume that   (             )  
be a random sample of size ( ) drawn from a 

certain population and it has pdf given by 

equation ( ) and assume that   is not observed 

exactly (precisely) but only partial information 

is available in the form of a fuzzy subset  ̃ 

with the membership function    ̃ 
( ). The 

observed-data likelihood function,  (     ̃)  
can be obtained according to Zadeh's 

definition of the probability of a fuzzy event 

through using the expression,  ( ̃)  

∫     ̃( )  
        , as, 

 (     ̃)  (
   

 
)
 

    ∏ ∫      
   (  

     )   ̃ 
( )      .................................... (5) 

and then natural log of equation ( ) can be 

obtained, as, 

 ̃      (     ̃)      (   )        

      

 ∑    ∫      
   (       )   ̃ 

( )     

 ............ (6) 

In order to obtain Bayes estimation, 

relative to squared error and linear-exponential 

(Linex) as symmetric and asymmetric loss 

functions respectively, assume that the prior 

distributions of   and   are taken to be 

independent Gamma (   ) and Gamma (   ) 
respectively with pdfs, 

 ( )  
  

 ( )
                   ..... (7) 

 ( )  
  

 ( )
                    ....... (8) 

The joint prior distribution, say  (   ), of 

unknown parameters can be written as: 

 (   )   ( )  ( )  
    

 ( ) ( )
            (     )  ...................... (9) 

The joint posterior density function of   

and   given fuzzy data, say  (     ̃), can be 

obtained by: 

 (     ̃)  
 (   | ̃)  (   )

∫ ∫  (   | ̃)  (   )      
  

  ........ (10) 

The formula of squared error loss function 

for   is [1]: 

 ( ̂   )  ( ̂   )
 
    

where  ̂  is an estimation of   based on 

squared error loss function. Bayes estimator of 

  based on this loss function is obtained as: 

 ̂    ( | ̃)  ........................................... (11) 

where the expectation is taken with respect 

to the posterior distribution of   . 

The formula of Linex loss function for   is, [5] 

 ( ̂   )   [ 
 ( ̂   )   ( ̂   )   ]    

         
where  ̂  is an estimation of   based on Linex 

loss function and Bayes estimator of   based 

on this loss function is obtained as: 

 ̂    
 

 
  [  ( 

       ̃)]  ....................... (12) 

where the expectation is taken with respect to 

the posterior distribution of      . 

Now, according to equations (  ) and 
(  ), Bayes estimation of any function of the 

parameters, say  (   ) , based on squared 

error and Linex loss functions can be written 

respectively as: 

 ̂ (   )   [ (   )   ̃]  

 
∫ ∫  (   )  (   | ̃)  (   )     

 
 

 
 

∫ ∫  (   | ̃)  (   )     
 
 

 
 

  .... (13) 

 ̂ (   )   
 

 
  [ ( (   )  ̃)]  

 
 

 
  [

∫ ∫  (   )  (   | ̃)  (   )     
 
 

 
 

∫ ∫  (   | ̃)  (   )     
 
 

 
 

]  ....... (14) 

Note that, the above ratio of two integrals 

cannot be simplified into a closed form. 

Therefore, we consider Lindley's 

approximation. Lindley (1980) [6] developed 

an approximate procedure for assessment the 

ratio of two integrals. Consider  ( ̃) defined 

as: 

 ( ̃)   [ (   )   ̃]  

∫ ∫  (   )  ̃    (   )     
 
 

 
 

∫ ∫   ̃    (   )     
 
 

 
 

  ......................... (15) 

where,  (   ) is a function of    and λ only, 

 ̃   is the natural log-likelihood function, 

given by equation (6),  (   ) is the natural 

log-joint prior density function. 

Then, for sufficiently large sample size, the 

ratio of two integrals   ( ̃) can be 

approximated as, (see [10]). 



Special Issus: 1st Scientific International Conference, College of Science, Al-Nahrain University, 21-22/11/2017, Part I, pp.174-185 

176 

 ( ̃)   ( ̂  ̂)  
 

 
[( ̂     ̂  ̂ ) ̂   

( ̂     ̂  ̂ ) ̂   ( ̂     ̂  ̂ ) ̂   

( ̂     ̂  ̂ ) ̂  ]  
 

 
[( ̂  ̂   

 ̂  ̂  )( ̂    ̂    ̂    ̂    ̂    ̂   

 ̂    ̂  )  ( ̂  ̂    ̂  ̂  )( ̂    ̂   

 ̂    ̂    ̂    ̂    ̂    ̂  )]  .............. (16) 

where,  ̂ and  ̂ are the MLE's of   and   

respectively. The MLE's of   and   can be 

obtained as solutions of the first partial 

derivative for equation ( ) with respect to that 

parameters, equations (  ) and (  ). It is 

clearly there is no closed-form solution to that 

equations, therefore, Newton–Raphson 

iterative techniques can be used to obtain the 

solution.  

    is the (   )   elements of matrix 

*
    ̃  

    
+
  

 where sub-scripts (   ) refers to 

    , respectively.  

 ̂  and  ̂  are the first derivative of the 

function  (   ) with respect to   and   

respectively evaluated at  ̂ and  ̂. 

 ̂   is the second derivative of the function 

 (   ) with respect to   evaluated at  ̂ and  ̂. 

Other expressions can be inferred exactly in 

similar style. 

 ̂  
    (   )

  
|    ̂
   ̂

 
   

 ̂
    

 ̂  
    (   )

  
|    ̂
   ̂

 
   

 ̂
    

  ̃  

  
 

  

 (   )
  

∑
∫        (   )   ̃ 

( )   

∫     (       )   ̃ 
( )   

   
     ... (17) 

  ̃  

  
 
 

 
  

∑
∫     ((   )       )   ̃ 

( )   

∫    (       )   ̃ 
( )   

 
      

 ........... (18) 
   ̃  

   
  

 (    )

  (   ) 
   

∑ *
∫          (   )   ̃ 

( )    

∫      (       )   ̃ 
( )   

  
   

(
∫        (   )    ̃ 

( )   

∫     (       )   ̃ 
( )   

)
 

+   ........ (19) 

   ̃  

   
  

  

  
   

∑ [
∫        (  (   )       )  ̃ 

( )    

∫      (       )   ̃ 
( )   

  
   

(
∫       ((   )        )   ̃ 

( )   

∫     (       )   ̃ 
( )   

)

 

]   (20) 

   ̃  

    
 
   ̃  

    
 

∑ [
∫     (   )(    (   ))  ̃ 

( )   

∫    (       )  ̃ 
( )   

  
   

∫       (   )   ̃ 
( )   ∫      ((   )       )  ̃ 

( )   

(∫    (       )   ̃ 
( )   )

 ]    

  .......... (21) 

 ̂    
   ̃  

      
|    ̂
   ̂

  ̂    
   ̃  

      
|   ̂
   ̂

  

  ̂    
   ̃  

      
|    ̂
   ̂

  

 ∑
∫  ̂       ̂ ( ̂  )( ̂( ̂  )   )   ̃ 

( )    

∫    ̂  (     ̂ ̂ )   ̃ 
( )   

 
      

∑
∫  ̂       ̂ ( ̂  )   ̃ 

( )   ∫      ̂ (( ̂  )   ̂ ̂   )    ̃ 
( )    

(∫    ̂  (     ̂ ̂ )   ̃ 
( )   )

 
 
      

 ∑
∫  ̂     ̂ ( ̂  )   ̃ 

( )   ∫      ̂ ( ̂  )( ̂( ̂  )   )    ̃ 
( )    

(∫    ̂  (     ̂ ̂ )   ̃ 
( )   )

 
 
      

 ∑
(∫  ̂      ̂ ( ̂  )   ̃ 

( )    )
 
∫       ̂ (( ̂  )   ̂ ̂   )   ̃ 

( )    

(∫    ̂  (     ̂ ̂ )   ̃ 
( )   )

 
 
      

 ........... (22) 
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   ̃  

      
|    ̂
   ̂

  ̂     
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 ∑
∫( ̂  )       ̂ ( ̂  )( ̂ ( ̂  )  )   ̃ 

( )    

∫    ̂  (     ̂ ̂ )   ̃ 
( )   

  
     

∑
∫      ̂  (  ( ̂  )    ̂ ̂ )  ̃ 

( )   ∫  ̂     ̂ ( ̂  )   ̃ 
( )    

(∫    ̂  (     ̂ ̂ )   ̃ 
( )   )

 
 
      

 ∑
∫     ̂  (( ̂  )   ̂ ̂   )  ̃ 

( )    

∫    ̂  (     ̂ ̂ )   ̃ 
( )   

 
     

*
∫     ̂ ( ̂  )(   ̂( ̂  ) )   ̃ 

( )    

∫    ̂  (     ̂ ̂ )   ̃ 
( )   

   

∫     ̂  (( ̂  )   ̂ ̂   )  ̃ 
( )    ∫  ̂     ̂ ( ̂  )   ̃ 

( )    

(∫    ̂  (     ̂ ̂ )   ̃ 
( )   )

 ]  

 ........... (23) 
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   ̂

  

 
  [ ̂( ̂  ) (  ̂  ) ]

 ̂ ( ̂  ) 
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∫  ̂        ̂ ( ̂  )   ̃ 
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∫    ̂  (     ̂ ̂ )   ̃ 
( )   

 
      

 ∑
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  ∑ (
∫  ̂      ̂ ( ̂  )    ̃ 

( )   

∫   ̂  (     ̂ ̂ )   ̃ 
( )   

)

 

 
     ......... (24) 

 ̂    
   ̃  

   
|    ̂
   ̂

  

 
  

 ̂ 
 ∑

∫      ̂  ( ̂( ̂  )     ̂ ̂  ( ̂  )     ̂ ̂   )  ̃ 
( )    

∫    ̂  (     ̂ ̂ )   ̃ 
( )   

 
     

  ∑
∫      ̂  (  ( ̂  )     ̂ ̂ )  ̃ 

( )    ∫      ̂  (( ̂  )    ̂ ̂   )  ̃ 
( )    

(∫    ̂  (     ̂ ̂ )   ̃ 
( )   )

 
 
     

   ∑ (
∫     ̂  (( ̂  )   ̂ ̂    )   ̃ 

( )   

∫   ̂  (     ̂ ̂ )   ̃ 
( )   

)

 

   
     

 ........... (25) 

Now, relative to squared error loss 

function, the approximate Bayes estimations 

would be as follows: 

For the parameter    : Assume that 

 (   )    and then, 

    ,                           

 ̂   (   ̃)   ̂   ̂  ̂    ̂  ̂   
 

 
[ ̂  ( ̂    ̂    ̂    ̂    ̂    ̂   

 ̂    ̂  )   ̂  ( ̂    ̂    ̂    ̂   

 ̂    ̂    ̂    ̂  )]    .............................. (26) 

 For the parameter   :Assume that  (   )  
  and then, 

    ,                     .  

 ̂   (   ̃)   ̂   ̂  ̂    ̂  ̂   
 

 
[ ̂  ( ̂    ̂    ̂    ̂    ̂    ̂   

 ̂    ̂  )   ̂  ( ̂    ̂    ̂    ̂   

 ̂    ̂    ̂    ̂  )]  ............................... (27) 

 For the reliability function: Assume that 

 (   )   ( )  
 

 
      (          ) 

and then: 

   
 

 
    (        

 

 
 
 

 
     )       

     (      
 

 
 
 

 
       )  

    
 

  
    (       )  

  

 
    (   ) (   

 

 
)    

     
     (  

 

 
)        (   ) (  

 

 
  )     

        
 

  
    (       )  

       (   ) (  
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 ̂ 
 ( )   ( ( )  ̃)  

 
 

 ̂
    ̂  ( ̂        ̂ ̂ )    

 

 
[( ̂     ̂  ̂ ) ̂   ( ̂     ̂  ̂ ) ̂     

( ̂     ̂  ̂ ) ̂   ( ̂     ̂  ̂ ) ̂     

( ̂  ̂    ̂  ̂  )( ̂    ̂    ̂    ̂   

 ̂    ̂    ̂    ̂  )    

( ̂  ̂    ̂  ̂  )( ̂    ̂    ̂    ̂   

 ̂    ̂    ̂    ̂  )]  ............................... (28) 

Relative to Linex loss function, approximate 

Bayes estimations would be as follows: 

 For the parameter    : Assume that 

 (   )       and then, 

       
   ,        

      ,        
           

 ̂   
 

 
  [ (      ̃)]  

where, 

 (      ̃)      ̂   ̂  ̂    ̂  ̂   
 

 
[ ̂  ( ̂    ̂    ̂    ̂    ̂    ̂   

 ̂    ̂  )   ̂  ( ̂    ̂    ̂    ̂   

 ̂    ̂    ̂    ̂  )] ................................ (29) 

 For the parameter   : Assume that 

 (   )       and then, 

       
   ,      

       ,        
         .  

 ̂   
 

 
  [ (      ̃)] 

where: 

 (      ̃)      ̂   ̂  ̂    ̂  ̂   
 

 
[ ̂  ( ̂    ̂    ̂    ̂    ̂    ̂   

 ̂    ̂  )   ̂  ( ̂    ̂    ̂    ̂   

 ̂    ̂    ̂    ̂  )]  ............................... (30) 

 For the reliability function: Assume that 

 (   )      ( )     
 

 
      (          )

 and 

then, 

   
 

 
       

 

 
    (         ) (

 

 
 
 

 
      

       )  

      
     

 

 
     (         ) (  
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    (         ) *      (        

          
 

 
 
 

 
     )  (      (  

 

 
 
 

 
           ))
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    (         ) *
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             ) (  

 

 
 
 

 
      

     )         (  
 

 
)  

 

  
(       )+  

 ̂ 
 ( )   

 

 
  [ (    ( )  ̃)]  

where: 

 (    ( )  ̃)     
 

 ̂
    ̂  ( ̂       ̂ ̂ )  

 

 
[( ̂     ̂  ̂ ) ̂   ( ̂     ̂  ̂ ) ̂   

( ̂     ̂  ̂ ) ̂   ( ̂     ̂  ̂ ) ̂   
( ̂  ̂    ̂  ̂  )( ̂    ̂    ̂    ̂   

 ̂    ̂    ̂    ̂  )  ( ̂  ̂   

 ̂  ̂  )( ̂    ̂    ̂    ̂    ̂    ̂   

 ̂    ̂  )]   ................................................ (31) 

 

3. Simulation Study and Results  

The simulation program has been written 

by using MATLAB (R2010b) computer 

program. The simulation study consist the 

following steps: 

› Choose the sample size ( )             

and     . Set the default (true) values for the 

shape parameter of    distribution ( )    
      and     . Further that, without the loss 

of generality, choose the default value for 

the scale parameter ( ) as     . Choose 

the values of hyper-parameters associated 

with gamma prior distributions to be 

               and       
    in order to deal with a non-

informative and informative priors 

respectively. Choose four times ( ) to assess 

the estimating reliability function: 

          . Choose the values of Linex loss 

function constant ( ):        . Choose the  

number of  sample  replicated ( ):      . 

› Generate a random sample, say  , of size   

distributed as    distribution. Since the 

explicit form of the inverse function of the 

   distribution cannot be obtained, the 

random samples are generated as the 

summation of two independent random 

variables distributed as exponential 

distribution with parameters ( ) and  

( (   )). 
Encode the simulated data according to the 

following fuzzy information system (FIS) 

Fig.(1), where each observation in sample will 

be fuzzy based on an suitable selected 

membership function. 

 

  ̃ ( )  {
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{
 
 

 
 
      

   
              

     

    
             

                        

 

  ̃ 
( )  

{
 
 

 
 
      

    
              

      

    
              

                        

   ̃ ( )  
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{
 
 

 
 
      

    
            

     

   
            

               

   ̃ ( )  
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Fig.(1) FIS used to Encode the Simulated 

Data [8]. 
 

› Compute the estimators of the unknown 

shape and scale parameters along with the 

reliability function of    distribution. The 

initial values required for iterative 

proceeding algorithms have been chosen to 

be the moment estimators [2] as: 

 ̂   
     √    

   
 and   ̂   

 ̂    

( ̂    ) ̅
    

Provided that,    
  

  
    

 

 
           

 ( )         ( 
 )  

The iterative process stops when the 

absolute difference between two successive 

iterations become less than         . 

› Repeat the above steps 100 times and then 

compare the different estimators for the 

shape and scale parameters according to the 

mean squared error    ( ̂) and    ( ̂) 
and compare the different estimators of 

reliability function with different times 

according to the integrated mean squared 

error     ( ̂( ))  as: 

   ( ̂)  
∑ ( ̂   )

  
   

 
  ........................... (32) 

   ( ̂)  
∑ ( ̂   )

  
   

 
  ............................ (33) 

    ( ̂( ))  
 

 
∑ (

 

  
 ∑ ( ̂ (  )  
  
   

 
   

 (  ))
 
)  ........................ (34) 

where: 

 ̂   ̂  : is the estimate of    and    respectively 

at the     replicate (run). 

 : is the number of sample replicated.  

   : is the number of times chosen to be (4). 

 ̂ (  ): is the estimates of   ( ) at the     

replicate (run) and     time. 

The results of simulation study are 

summarized in tables (1)-(8). 

 

3.1 Simulation Results for Estimating the 

Parameters 

From tables (1)-(6) which present the 

simulation results for estimated MSE 

associated with different estimations of the 

unknown shape and scale parameters of    

distribution with             and    , we 

have observed:  

 The performance of Bayes estimates based 

on Linex loss function with positive value 

of its shape parameter ( ) is better than that 

based on negative value for all sample 

sizes. 

 The performance of Bayes estimates with 

non-informative priors assumption based on 

Linex loss function with different values of 

( ) is better than that based on squared 

error loss function for all sample sizes.  

 The performance of Bayes estimates with 

informative priors assumption based on 

squared error loss function and that based 

on Linex loss function with negative value 

of ( ) is almost identical especially with 

    . 

 The performance of Bayes estimates with 

informative priors assumption is better than 

that with non-informative priors assumption 

for all sample sizes. 

 The estimations can be ordered according 

to their performance as: 

 

 

Order 1 2 3 

Performance 
  (      )   (      )    

with non-informative priors 

Performance 
  (      )      (      ) 

with informative priors 
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3.2 Simulation Results for Estimating the 

Reliability Function 

From tables (7) and (8) which present the 

simulation results for estimated IMSE 

associated with different estimations of the 

reliability function of    distribution 

with             and    , we have 

observed:  

 The performance of Bayes estimates based 

on Linex loss function with positive value 

of its shape parameter ( ) is better than that 

based on negative value for all sample 

sizes. 

 The performance of Bayes estimates based 

on Linex loss function with different values 

of ( ) is better than that based on squared 

error loss function for all sample sizes.  

 In general, the performance of Bayes 

estimates with non-informative priors 

assumption based on different loss 

functions is almost identical especially with 

n  50. 

 The performance of Bayes estimates with 

informative priors assumption is better than 

that with non-informative priors assumption 

for all sample sizes. 

 The estimations can be ordered according 

to their performance as: 

 

Order 1 2 3 

Performance 
  (      )   (      )    

with non-informative and informative priors 

 

4. Conclusions 

The most important conclusions according 

to Monte Carlo simulation study based on 

fuzzy data, tables (1)…(8), are summarized 

by: 

1. From the estimated mean squared error 

values associated with different estimates of 

the unknown shape and scale parameters of 

weighted exponential distribution with 

shape parameter             and scale 

parameter    , we have observed:  

 For all sample sizes, increase the value of 

the shape parameter, increasing the values 

of mean squared error associated with 

Bayes estimates with non-informative and 

informative gamma priors assumption.  

  With all estimates, the values of mean 

squared error are decreasing as the sample 

size increase.  

 For all sample sizes, the performance of 

Bayes estimates according to Lindley's 

approximation with informative gamma 

priors assumption is better than that with 

non-informative priors.  

 For all sample sizes, the performance of 

Bayes estimates according to Lindley's 

approximation with non-informative and 

informative gamma priors assumption 

based on linear-exponential (Linex) loss 

function with positive value of its shape 

parameter is better than that based on 

negative value.  

 The performance of Bayes estimates 

according to Lindley's approximation with 

informative gamma priors assumption 

based on squared error loss function and 

that based on Linex loss function with 

negative value of its shape parameter is 

almost identical especially with large 

sample sizes.  

2. From the estimated integrated mean squared 

error values associated with different 

estimates of the reliability function of 

weighted exponential distribution with 

shape parameter             and scale 

parameter    , we have observed:  

 For all sample sizes, increase the value of 

the shape parameter, decreasing the 

values of integrated mean squared error 

associated with all estimations.  

 The values of integrated mean squared 

error associated with all estimations are 

decreasing as the sample size increase.  

 The performance of Bayes estimates with 

informative gamma priors assumption is 

better than that with non-informative 

priors assumption for all sample sizes. 

Further, the performance of Bayes 

estimates based on Linex loss function is 

better than that based on squared error 

loss function for all sample sizes.  
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Table (1) 

MSE Values Associated with Bayes Estimates of the Shape and Scale Parameters  

of    Distribution based on Squared Error Loss Function with Non-Informative  

Priors and Different Sample Sizes. 

       ̂    ̂   

25 

0.5 1 0.7513466 0.2055911 

1 1 0.8211137 0.2230011 

1.5 1 1.2935761 0.2739481 

50 

0.5 1 0.6256030 0.0439936 

1 1 0.7007319 0.1224583 

1.5 1 0.9825211 0.1374294 

75 

0.5 1 0.5256901 0.0426216 

1 1 0.6903225 0.0603187 

1.5 1 0.8508306 0.0794490 

100 

0.5 1 0.2490393 0.0119749 

1 1 0.5022281 0.0459603 

1.5 1 0.8117866 0.0599941 
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Table (2) 

MSE Values Associated with Bayes Estimates of the Shape and Scale Parameters  

of    Distribution based on Linex Loss Function with Non-Informative Priors, 

        and Different Sample Sizes. 

       ̂   (       )  ̂   (       ) 

25 

0.5 1 0.7493397 0.1122675 

1 1 0.8072443 0.1352087 

1.5 1 0.9951300 0.2130023 

50 

0.5 1 0.4015880 0.0407778 

1 1 0.4758065 0.1058622 

1.5 1 0.6456800 0.1141037 

75 

0.5 1 0.3191192 0.0354204 

1 1 0.3214306 0.0381708 

1.5 1 0.3937044 0.0416263 

100 

0.5 1 0.1018511 0.0089937 

1 1 0.2629313 0.0320119 

1.5 1 0.3727509 0.0333864 

 

Table (3) 

MSE Values Associated with Bayes Estimates of the Shape and Scale Parameters of    

Distribution based on Linex Loss Function with Non-Informative Priors,         and 

Different Sample Sizes. 

       ̂   (       )  ̂   (       ) 

25 

0.5 1 0.7504430 0.1912071 

1 1 0.8092657 0.2030487 

1.5 1 0.9981224 0.2631765 

50 

0.5 1 0.6009801 0.0439381 

1 1 0.6991300 0.1215570 

1.5 1 0.9780852 0.1253871 

75 

0.5 1 0.5110943 0.0425360 

1 1 0.6641505 0.0600129 

1.5 1 0.8312896 0.0782183 

100 

0.5 1 0.1351335 0.0108225 

1 1 0.4536963 0.0429080 

1.5 1 0.7916566 0.0595802 
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Table (4) 

MSE Values Associated with Bayes Estimates of the Shape and Scale Parameters  

of    Distribution based on Squared Error Loss Function with Informative  

Priors and Different Sample Sizes. 

       ̂    ̂   

25 

0.5 1 0.4533799 0.0186437 

1 1 0.4938780 0.0188310 

1.5 1 0.6134889 0.0198231 

50 

0.5 1 0.3273896 0.0123893 

1 1 0.3658930 0.0155298 

1.5 1 0.3996709 0.0193793 

75 

0.5 1 0.2824340 0.0099085 

1 1 0.2987288 0.0109832 

1.5 1 0.3025980 0.0190913 

100 

0.5 1 0.0917286 0.0086008 

1 1 0.1686639 0.0091631 

1.5 1 0.1789889 0.0093009 

 

Table (5) 

MSE Values Associated with Bayes Estimates of the Shape and Scale Parameters  

of    Distribution based on Linex Loss Function with Informative  

Priors,         and Different Sample Sizes. 

       ̂   (       )  ̂   (       ) 

25 

0.5 1 0.3387012 0.0108905 

1 1 0.3619889 0.0111837 

1.5 1 0.3928902 0.0168383 

50 

0.5 1 0.2898795 0.0095859 

1 1 0.2899092 0.0099980 

1.5 1 0.2989183 0.0102761 

75 

0.5 1 0.1818837 0.0088036 

1 1 0.1978901 0.0092369 

1.5 1 0.2871999 0.0093300 

100 

0.5 1 0.0913841 0.0069203 

1 1 0.1427086 0.0069823 

1.5 1 0.1454985 0.0071922 
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Table (6) 

MSE Values Associated with Bayes Estimates of the Shape and Scale Parameters  

of    Distribution based on Linex Loss Function with Informative Priors,         

and Different Sample Sizes. 

       ̂   (       )  ̂   (       ) 

25 

0.5 1 0.4989843 0.0196970 

1 1 0.5260977 0.0218984 

1.5 1 0.6289070 0.0220855 

50 

0.5 1 0.3819403 0.0130389 

1 1 0.3909911 0.0166884 

1.5 1 0.4078695 0.0200283 

75 

0.5 1 0.2890858 0.0100795 

1 1 0.2989332 0.0109888 

1.5 1 0.3099570 0.0198655 

100 

0.5 1 0.0920090 0.0087989 

1 1 0.1689785 0.0091954 

1.5 1 0.1796331 0.0093031 

 

Table (7) 

IMSE Values Associated with Bayes Estimates of the Reliability Function of     

Distribution based on Squared Error and Linex Loss Functions with Non-Informative  

Priors and Different Sample Sizes. 

       ̂  ( )  ̂  ( ) (       )  ̂  ( ) (       ) 

25 

0.5 1 0.0095987 0.0095919 0.0089883 

1 1 0.0028115 0.0024998 0.0024440 

1.5 1 0.0023982 0.0023774 0.0023732 

50 

0.5 1 0.0043492 0.0043448 0.0043441 

1 1 0.0018889 0.0018876 0.0018848 

1.5 1 0.0006438 0.0006435 0.0006433 

75 

0.5 1 0.0005081 0.0005014 0.0005010 

1 1 0.0003868 0.0003808 0.0003803 

1.5 1 0.0002752 0.0002747 0.0002732 

100 

0.5 1 0.0003429 0.0003448 0.0003441 

1 1 0.0002359 0.0002351 0.0002349 

1.5 1 0.0001460 0.0001458 0.0001458 
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Table (8) 

IMSE Values Associated with Bayes Estimates of the Reliability Function of     

Distribution based on Squared Error and Linex Loss Functions with Informative  

Priors and Different Sample Sizes. 

       ̂  ( )  ̂  ( ) (       )  ̂  ( ) (       ) 

25 

0.5 1 0.0072386 0.0071706 0.0057094 

1 1 0.0019059 0.0016513 0.0012221 

1.5 1 0.0016223 0.0014031 0.0012096 

50 

0.5 1 0.0038890 0.0038194 0.0026675 

1 1 0.0011085 0.0010079 0.0009815 

1.5 1 0.0004556 0.0004188 0.0003879 

75 

0.5 1 0.0002944 0.0002904 0.0002317 

1 1 0.0002669 0.0002266 0.0002141 

1.5 1 0.0002396 0.0002177 0.0001991 

100 

0.5 1 0.0002418 0.0002309 0.0001957 

1 1 0.0002088 0.0001992 0.0001384 

1.5 1 0.0001086 0.0001073 0.0001067 

 

 

 


