Essentially Small Quasi-Dedekind Module Relative to a Module

Mukdad Qaess Hussein¹, Marrwa Abdallah Salih² and Nagham Ali Hussen³

¹ Department of Computer Science, College of Education for Pure Science, Diyala University,

Diyala-Iraq.

² Department of Mathematics, College of Education for Pure Science, Tikrit University, Tikrit-Iraq. ³ College of Engineering, University of Information Technology and Communications,

Baghdad-Iraq.

Abstract

Let R be a ring with identity and let M be a unitary left module over R. In this paper, we study direct summand (direct sum) of essentially small quasi-Dedekind module (essentially small quasi-Dedekind modules). Also, give the definition of essentially small quasi-Dedekind relative to a module with some examples. We give some of their basic properties and some examples that illustrate these properties. [DOI: 10.22401/ANJS.00.1.23]

Keywords: Small modules, quasi-Dedekind modules.

Introduction

This paper study the direct summand of essentially small quasi-Dedekind module and the direct sum of essentially small quasi-Dedekind modules need not be essentially small quasi-Dedekind. We give the definition of essentially small quasi-Dedekind module relative to a module.

A submodule A of an R-module M is called small in M (A \ll M) if whenever a submodule B of M with M = A + B implies B = M, [1].

An R-submodule N of an R-module M is called essentially small (N \ll_e M), if for every nonzero small submodule K of M, K \cap N \neq {0}. Equivalently, for each $0 \neq x \in$ M, there exists $0 \neq r \in$ R such that $0 \neq rx \in$ N.

An R-module M is called essentially small quasi-Dedekind if Hom $(M/N, M) = \{0\}$ for all $N \ll_e M$.

A ring R is essentially small quasi-Dedekind if R is an essentially small quasi-Dedekind R-module.

A submodule N of an R-module M is called small invertible if $N^{-1}N = M$, where $N^{-1} = \{x \in R_T : xN \ll M\}$ and R_T is the localization of R at T in the usual sense, $T = \{s \in S: sm = 0 \text{ for some } m \in M, \text{ then } m = 0\}$, where S is the set of all nonzero divisors of R.

An R-module M is called small quasi-Dedekind, if every nonzero R submodule N of M is small quasi-invertible; that is Hom(M/N, M) = {0}, for all {0} \neq N \ll M. A ring R is small quasi-Dedekind if R is a small quasi-Dedekind R-module.

The property of essentially small quasi-Dedekind module is inherited by direct summand.

Proposition 1:

A direct summand of an essentially small quasi-Dedekind module is an essentially small quasi-Dedekind module.

Proof:

Let M be an essentially small quasi-Dedekind R-module and let $N \leq^{\oplus} M$, then $M = N \oplus K$, for some submodule $K \le M$. Let $f \in End_R(N), f \neq 0$, to prove that Ker f the **К**е N. Consider following: $M \xrightarrow{\rho} N \xrightarrow{f} N \xrightarrow{i} M$, where ρ is the natural projection, and i is the inclusion mapping. Hence $h = iofo \rho \in End_{R}(M)$ and $h \neq 0$, so Ker h \ll_e M and since Kerf \subset Kerh then Kerf $\ll_e M$. Now assume that Kerf $\ll_e N$, we shall show this implies Ker $h \ll_e M$ and so we get a contradiction.

Let x + y be any nonzero element of M, where $x \in N, y \in K$. If $x \neq 0$ and $(y = 0 \text{ or } y \neq 0)$, then since Kerf $\ll_e N$, there exists $0 \neq r \in R$ such that $0 \neq rx \in Kerf$. Hence $rx + ry \neq 0$, because if rx+ry = 0, then $rx = -ry \in N \cap K = \{0\}$ which is a contradiction. Also h(rx + ry) = 0; that is $0 \neq r(x+y) \in Kerh$. If x = 0 and $y \neq 0$, then $x + y = y \neq 0$ and 1.y = y, $h(y) = iofo \rho (0+y) =$ iof(0) = f(0) = 0; that is $0 \neq 1(x+y) = y \in Ker h$. Therefore Ker h $\ll_e M$ which is a contradiction. Thus our assumption is false and hence Ker f $\ll_e N$; that is N is an essentially small quasi-Dedekind R-module.

The following example shows the direct sum of essentially small quasi-Dedekind modules is not necessarily essentially small quasi-Dedekind module.

Example 2:

It is known that Z and Z_2 are essentially small quasi-Dedekind as Z-modules. But $Z \oplus Z_2$ is not an essentially small quasi-Dedekind Z-module.

Let M and N be R-modules. We say that M is an essentially small quasi-Dedekind (Knonsingular) relative to N if, for all $f \in Hom(M, N), f \neq 0$, implies Kerf $\ll_{e} M$.

An *R*-module M is called small uniform, if $M \neq 0$ and every nonzero submodule of M is essentially small in M.

An R-module M is called semisimple if every submodule of M is direct summand of M [1, p.189].

Remarks and Examples 3

- Let M be an R-module. Then M is an essentially small quasi-Dedekind if and only if M is an essentially small quasi-Dedekind relative to M.
- 2) Let M be an essentially small quasi-Dedekind R-module. Then M is an essentially small quasi-Dedekind relative to N, for all $N \le M$.

Proof:

Let $N \le M$. If N = M, then M is an essentially small quasi-Dedekind relative to N. If $N \leqq M$, assume that $f \in Hom(M, N)$, $f \ne 0$. Hence $iof \in End_R(M)$, $iof \ne 0$, where i is the inclusion mapping. Since M is an essentially small quasi-Dedekind R-module, then Ker(iof) $\ll_e M$. But Kerf = Ker(iof), thus Kerf $\ll_e M$ and so M is an essentially small quasi-Dedekind relative to N.

- 3) Every small uniform R-module M is not an essentially small quasi-Dedekind relative to N, where N is any R-module.
- 4) Any semisimple R-module M is an essentially small quasi-Dedekind relative to N, where N is any R-module.

5) Z12 is not essentially small quasi-Dedekind relative to Z6, since there exists $f: Z_{12} \longrightarrow Z_6$ defined by $f(\overline{x}) = 3\overline{x}$ for all $\overline{x} \in Z_{12}$, hence $Kerf = (\overline{2}) \ll_e Z_{12}$.

Theorem 4:

Let $(M_i)_{i \in \Lambda}$ be a family of modules. Then $M = \bigoplus_{i \in \Lambda} M_i$ is essentially small quasi-Dedekind if and only if M_i is an essentially small quasi-Dedekind relative to M_j , for all

$i, j \in \Lambda$.

Proof:

We shall give the details of proof of this theorem for $i \in \Lambda = \{1,2\}$, and the proof for any Λ is similarly.

 \Rightarrow) Since $M = M_1 \oplus M_2$ is an essentially small quasi-Dedekind R-module, then by Prop1, M_1 and M_2 are essentially small quasi-Dedekind R-modules. So M₁ is an essentially small quasi-Dedekind relative to M₁ and M₂ is an essentially small quasi-Dedekind relative to M_2 . Now, to prove that M_1 is an essentially small quasi-Dedekind relative to M2. Let $f: M_1 \longrightarrow M_2$, f $\neq 0$. Consider the following: $M \xrightarrow{\rho} M_1 \xrightarrow{f} M_2 \xrightarrow{i} M$, where ρ is the natural projection, and i is the inclusion mapping. Then $h = iofo \rho \in End_{R}(M)$ and $h \neq 0$, thus Kerh \ll_{e} M, but Kerf \subseteq Kerh which implies Kerf \ll_e M. Now we have to prove that Kerf $\ll_e M_1$. Suppose that Kerf \ll_e M₁, then Kerf \oplus $M_2 \ll_e M_1 \oplus M_2 = M$, but we can show that $Kerh = Kerf \oplus M_2$ as follows: Let $x \in Kerf$, $y \in M_2$, h(x + y) = $iofo \rho (x + y) = iof (x) = f(x) = 0$, thus *Kerf* \oplus $M_2 \subseteq$ *Kerh*, and let $x + y \in Kerh \subseteq M_1 \oplus M_2$, so $x \in M_1$, $y \in M_2$, since h(x + y) = 0 implies (iofo ρ)(x + y) = 0, so iof (x) = 0 then f(x) = 0; that is $x \in Kerf$, thus *Kerh* \subset *Kerf* \oplus M_2 . Hence $Kerh = Kerf \oplus M_2 \ll_e M_1 \oplus M_2 = M$, which is a contradiction. Therefore Kerf $\ll_e M_1$ and hence M₁ is an essentially small quasi-Dedekind relative to M₂.

Similarly, M_2 is an essentially small quasi-Dedekind relative to M_1 .

$$(=) \text{ Let } \psi : M \longrightarrow M \text{ such that } Ker \psi \ll_{e}$$

M, so $Ker \psi \cap M_{1} \ll_{e} M_{1}$. Let

$$\psi|_{M_{1}} : M_{1} \longrightarrow M \text{ such that } \psi|_{M_{1}} (x) = \psi(x+0), \text{ for all } x \in M_{1}, \text{ then }$$

$$Ker(\psi|_{M_{1}}) = Ker \psi \cap M_{1}, \text{ to see this:}$$

Let $x \in Ker(\psi|_{M_{1}}) \text{ implies:}$

$$0 = \psi|_{M_{1}} (x) = \psi(x+0) = \psi(x)$$

It follows that $x \in Ker \psi \cap M_{1}$. Also, let
 $x \in Ker \psi \cap M_{1}, \text{ so } x \in M_{1} \text{ and }$

$$0 = \psi(x) = \psi(x+0) = \psi|_{M_{1}} (x), \text{ so } x \in Ker(\psi|_{M_{1}}). \text{ Consider the following:}$$

$$M_{1} \xrightarrow{|\psi|_{M_{1}}} M \xrightarrow{\rho_{1}} M_{1} \text{ and }$$

$$M_{1} \xrightarrow{|\psi|_{M_{1}}} M \xrightarrow{-\rho_{2}} M_{2}, \text{ where } \rho_{1}, \rho_{2} \text{ are the natural projections. We claim that }$$

$$Ker(\rho_{1}o\psi|_{M_{1}}) \cap Ker(\rho_{2}o\psi|_{M_{1}}) \supseteq Ker\psi|_{M_{1}}.$$

To prove our assertion: Let $x \in Ker(\psi|_{M_{1}})$ then $\psi|_{M_{1}} (x) = 0$, hence:

$$\rho_{1}o\psi|_{M_{1}} (x) = \rho_{1} (\psi|_{M_{1}} (x)) = \rho_{2} (0) = 0$$

Thus $x \in Ker(\rho_{1}o\psi|_{M_{1}}) \cap Ker(\rho_{2}o\psi|_{M_{1}}) \supseteq Ker\psi|_{M_{1}}.$
But $Ker(\psi|_{M_{1}}) = Ker\psi \cap M_{1} \ll M_{1}$, so $Ker(\rho_{1}o\psi|_{M_{1}}) \cap Ker(\rho_{2}o\psi|_{M_{1}}) \ll M_{1}$ and hence $Ker(\rho_{1}o\psi|_{M_{1}}) \ll M_{1}$ and $Ker(\rho_{1}o\psi|_{M_{1}}) \ll M_{1}$. But M_{1} is an essentially small quasi-Dedekind relative to M_{1} and M_{1} is an essentially small quasi-Dedekind relative to M_{1} and M_{1} is an essentially small quasi-Dedekind relative to $M_{1} = 0, \psi|_{M_{1}} = 0, \psi|$

$$\rho_2 o \psi \Big|_{M_1} = 0 \qquad \dots (1)$$

by a similar procedure, we obtain:

$$\rho_1 o \psi \Big|_{M_2} = 0, \ \rho_2 o \psi \Big|_{M_2} = 0 \qquad \dots (2)$$

Then by (1) and (2) we conclude $\psi = 0$.

Proposition 5:

Let M be an essentially small quasi-Dedekind (K-nonsingular) module, and let $N \le M$. If $N \ll_e N_i \le^{\oplus} M$, for i = 1,2, then $N_1 = N_2$.

Proof:

Consider the endomorphism $(I - \rho_1)\rho_2$, ρ_i is the natural projections of M onto N_i, i = 1, 2; that is $\rho_1 : M \longrightarrow N_1$, $\rho_2 : M \longrightarrow N_2$. Since $N \subseteq N_1$ and $N \subseteq N_2$, so $\rho_1(n) = n$, $\rho_2(n) = n$ for all $n \in N$. Hence for each $n \in N$ $([I - \rho_1]\rho_2)(n) = I - \rho_1(\rho_2(n))$ $= (I - \rho_2(n))$

$$= (I - \rho_1)(n) = I(n) - \rho_1(n) = 0$$

so:

$$N \subseteq Ker([I - \rho_1]\rho_2) \qquad \dots (1)$$

Since $N_2 \leq^{\oplus} M$, so there exists $K_2 \leq M$ such that $N_2 \oplus K_2 = M$, and since for each $k \in K_2$, $([I - \rho_1]\rho_2)(k) = (I - \rho_1)(\rho_2(k)) = (I - \rho_1)(0) = 0$ implies

$$K_{2} \subseteq Ker([I - \rho_{1}]\rho_{2}) \qquad \dots (2)$$

Now, from (1) and (2) then
 $N \oplus K_{2} \subseteq Ker([I - \rho_{1}]\rho_{2})$, but N $\ll_{e} N_{2}$,
 $K_{2} \ll_{e} K_{2}$, so $N \oplus K_{2} \ll_{e} N_{2} \oplus K_{2} = M$.
Hence $Ker([I - \rho_{1}]\rho_{2}) \ll_{e} M$, so
 $(I - \rho_{1})\rho_{2} = 0$ (since M is an essentially small
quasi-Dedekind module). It follows that
 $\rho_{2} = \rho_{1}o\rho_{2}$. Now, we can prove that
 $N_{2} \subseteq N_{1}$. Let $x \in N_{2}$, then $\rho_{2}(x) = x$. Hence
 $\rho_{1}(\rho_{2}(x)) = \rho_{1}(x)$, then $\rho_{1}(x) = \rho_{2}(x) = x$.
Hence $x \in N_{1}$, thus $N_{2} \subseteq N_{1}$.

Similarly by taking $(I - \rho_2)\rho_1$ and showing it is zero, then we obtain $N_1 \subseteq N_2$. Thus $N_1 = N_2$.

References

[1] F. Kasch, **Modules and rings**, Academic Press., London, 1982.