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Abstract

Let R be a ring with identity and let M be a unitary left module over R. In this paper, we study
direct summand (direct sum) of essentially small quasi-Dedekind module (essentially small quasi-
Dedekind modules). Also, give the definition of essentially small quasi-Dedekind relative to a
module with some examples. We give some of their basic properties and some examples that
illustrate these properties. [DOI: 10.22401/ANJS.00.1.23]
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Introduction

This paper study the direct summand of
essentially small quasi-Dedekind module and
the direct sum of essentially small quasi-
Dedekind modules need not be essentially
small quasi-Dedekind. We give the definition
of essentially small quasi-Dedekind module
relative to a module.

A submodule A of an R-module M is
called small in M (A «KM) if whenever a
submodule B of M with M = A + B implies
B=M,[1].

An R-submodule N of an R-module M is
called essentially small (N <, M), if for every
nonzero small submodule K of M, KNN =+
{0}. Equivalently, for each 0 # x € M, there
exists 0 #r € Rsuch that 0 # rx € N.

An R-module M is called essentially small
quasi-Dedekind if Hom(M/N, M) = {0} for all
N < M.

A ring R is essentially small quasi-
Dedekind if R is an essentially small quasi-
Dedekind R-module.

A submodule N of an R-module M is
called small invertible if N7IN = M,
where N™1 = {x € Ry : XN«M} and Ry is the
localization of R at T in the usual sense, T = {s
€ S: sm = 0 for some m € M, then m = 0},
where S is the set of all nonzero divisors of R.

An R-module M is called small quasi-
Dedekind, if every nonzero R submodule N of
M is small quasi-invertible; that is Hom(M/N,
M) = {0}, for all {0} # N < M.
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A ring R is small quasi-Dedekind if R is a
small quasi-Dedekind R-module.

The property of essentially small quasi-
Dedekind module is inherited by direct
summand.

Proposition 1:

A direct summand of an essentially small
quasi-Dedekind module is an essentially small
quasi-Dedekind module.

Proof:

Let M be an essentially small quasi-
Dedekind R-module and let N <® M, then
M=N®K, for some submodule K<M.
Let f eEnd,(N), f %0, to prove that Ker f
Ke N. Consider the following:
M—-25N—"5N—>M, where p is the
natural projection, and i is the inclusion
mapping. Hence h=iofopeEnd;(M) and
h=0, so Ker h <, M and since Kerf < Kerh
then Kerf <« M. Now assume that Kerf <. N,
we shall show this implies Ker h <, M and so
we get a contradiction.

Let x + y be any nonzero element of M,

where xeN,yeK. If x#0 and (y = 0 or
y#0), then since Kerf <. N, there exists
O0#reR such that O0=rxeKerf. Hence
rx+ry =0, because if rx+ry = 0, then rx =
-ry € NnK = {0} which is a contradiction.
Also h(rx + ry) = 0; that is
O#r(x+y)eKerh.If x=0and y=0, then

X+y=y=0 and L.y=Yy, h(y)=iofo p (0+y) =




i0f(0) = f(0) = 0; that is O0=1(x+y)=
y € Kerh. Therefore Ker h <, M which is a

contradiction. Thus our assumption is false
and hence Ker f <« N; that is N is an
essentially small quasi-Dedekind R-module.

The following example shows the direct
sum of essentially small quasi-Dedekind
modules is not necessarily essentially small
quasi-Dedekind module.

Example 2:
It is known that Z and Z, are essentially

small quasi-Dedekind as Z-modules. But
Z®Z, is not an essentially small quasi-
Dedekind Z-module.

Let M and N be R-modules. We say that M
is an essentially small quasi-Dedekind (K-
nonsingular) relative to N if, for all
f e Hom(M, N), f =0, implies Kerf <, M.

An R-module M is called small uniform, if
M =0 and every nonzero submodule of M is
essentially small in M.

An R-module M is called semisimple if
every submodule of M is direct summand of M
[1, p.189].

Remarks and Examples 3

1) Let M be an R-module. Then M is an
essentially small quasi-Dedekind if and
only if M is an essentially small quasi-
Dedekind relative to M.

2) Let M be an essentially small quasi-
Dedekind R-module. Then M is an
essentially small quasi-Dedekind relative to
N, forallN <M.

Proof:

Let N<M. If N =M, then M is an

essentially small quasi-Dedekind relative to N.

If N = M, assume that f e Hom(M,N), f #0.

Hence iof € Endg (M), iof =0, where i is the

inclusion mapping. Since M is an essentially

small quasi-Dedekind R-module, then Ker(iof)

e M. But Kerf = Ker(iof), thus Kerf < . M

and so M is an essentially small quasi-

Dedekind relative to N.

3) Every small uniform R-module M is not an
essentially small quasi-Dedekind relative to
N, where N is any R-module.

4) Any semisimple R-module M is an
essentially small quasi-Dedekind relative to
N, where N is any R-module.
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5) Z12 is not essentially small quasi-Dedekind
relative to Z6, since there exists
f:2,——>Z, defined by f(x)=23xfor

all xeZ,,, hence Kerf = (2) <eZ».

Theorem 4:
Let(M;),_, be a family of modules. Then
M=®,, M, is essentially small quasi-

Dedekind if and only if M, is an essentially
small quasi-Dedekind relative to M, for all
i,jeA.
Proof:

We shall give the details of proof of this
theorem for ie A={,2}, and the proof for
any A issimilarly.

=) Since M =M, @M, is an essentially
small quasi-Dedekind R-module, then by
Propl, M; and M, are essentially small quasi-
Dedekind R-modules. So M; is an essentially
small quasi-Dedekind relative to M; and M; is
an essentially small quasi-Dedekind relative to
M,. Now, to prove that M; is an essentially
small quasi-Dedekind relative to M,. Let
f :M,——>M,, f=# 0. Consider the following:
M—25M,—>M,——>M, where p is
the natural projection, and i is the inclusion
mapping. Then h=iofopeEnd;(M) and
h =0, thus Kerh <. M, but Kerf c Kerh

which implies Kerf <. M. Now we have to
prove that Kerf <, M;. Suppose that Kerf <,

Mj, then Kerf ®M,<&.M;®M, =M, but
we can show that Kerh=Kerf ®M,as
follows: Let x e Kerf, yeM,, h(x+y)=
iofop(x + y) = iof (x) = f(x) = 0, thus
Kerf © M, < Kerh, and let
X+yeKerhc M, ®&M,, so X€ M;, y € M,,
since h(x +y) = 0 implies (iofo p)(x+y) =0,
so iof (x) = 0 then f(x) = 0; that is x € Kerf ,
thus Kerh ¢ Kerf @ M, . Hence
Kerh = Kerf @M, <. M; ®M, =M, which
is a contradiction. Therefore Kerf <, M; and
hence M; is an essentially small quasi-
Dedekind relative to M.

Similarly, M; is an essentially small quasi-
Dedekind relative to M.
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<) Let w: M ——M such that Kery <«
so KerynM, <K M Let

such that

M,
vlw, 1M, —M
l//‘Ml(X)=l//(X+O), for all xeM,, then
Ker(t//‘ w,) = Kery m M, to see this:

Let x e Ker(n//‘ w,) implies:

0=y, (%) = (x+0) =y(x)
It follows that xeKeryM,. Also, let

xeKerynM,, SO XxeM, and
0=y(x) =y (x+0) =y|y, (), 50
Xe Ker(n//‘ w,) - Consider the following:
M, M 2y M, and
M, LTIy >M,, where p, p,

are the natural projections. We claim that
Ker (p, 0y Ml) M Ker(pzow‘ Ml) o Ker l//‘ M, -

To prove our assertion: Let X e Ker(://‘ )

then l//‘ w, (X) =0, hence:
w, () =2 W], (X)) =0 (0) =0
v, ()= 0, (W], (X)) = 2 (0) =0
x e Ker(p,0y|y,) N Ker (p,09/,);

POy
POy
Thus
that is:
Ker(p,0p
But

) O Ker(pzow\ w,) = Ker V/\ M, -
Ker(://‘Ml) —Kery "M, <. M, s0
Ker(p,0 y/‘ Wi Ker(pzow‘ w)<<Ke Mi and

hence My and

Ker (p,0 l//‘ Ml) Ke
Ker(p,0 1//‘ w,) Ke M1. But My is an essentially

small quasi-Dedekind relative to Mj and M; is
an essentially small quasi-Dedekind relative to

M,, by hypothesis. So that plot//‘M1=0,

0¥y, =0 (1)
by a similar procedure, we obtain:
plol//‘MZZO’pZOl//‘MZZO (2

Then by (1) and (2) we conclude i =0.
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Proposition 5:

Let M be an essentially small quasi-
Dedekind (K-nonsingular) module, and let
N<M.IfN <& N, <*M, fori=12, then
N1 = Noa.

Proof:
Consider the endomorphism (I —p,)p,,

p; 1s the natural projections of M onto N;, i =

1, 2;thatis p:M——>N,, p,:M——N,.
Since Nc N, and N N,, so p(n)=n,
p,()=n for all neN. Hence for each
neN
([1 = pulp2)(n) =1 = p1(p2(n))
=(1-p1)(n)
=1(nN)-p(n)=0
S0:
N < Ker ([l — p1p,) (1)
Since N, <® M, so there exists K, <M such
that N, ® K, =M, and since for each k e K,,
([ - 2e)(K) = (1 = p) (o, (K) = (I = p,)(0) =0
implies
K, = Ker([l - p.1p,) (2)
Now, from 1) and (2)  then
N®K, cKer([l —p,10,), but N < Ny,
Ky e Ky, 50 N@K,&N,®K,=M.
Hence Ker([I — p,]1p,) <e M, o)
(I = p,)p, =0 (since M is an essentially small
quasi-Dedekind module). It follows that
P, =p0p,. Now, we can prove that

N, < N;. Let xe N,, then p,(X) = X. Hence
pi(p, (X)) =p(X),  then p(X) = p,(X) =X.
Hence x e N, thus N, = N,.

Similarly by taking (1 — p,)p, and showing
it is zero, then we obtain N, < N, . Thus N; =
N,.
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