Fibrewise Pairwise *bi*-Separation Axioms

Y. Y. Yousif¹ and L. A. Hussain² ¹ Department of Mathematics, College of Education for Pure Science (Ibn Al-haitham), Baghdad University, Baghdad-Iraq. ² Ministry of Education, Directorate of Education, Baghdad, Al-Kark-3 Corresponding author: yoyayousif@yahoo.com¹, Liwaaalhashemy@Gmail.com²

Abstract

The main idea of this research is to consider fibrewise pairwise versions of the more important separation axioms of ordinary bitopology named fibrewise pairwise $bi-T_0$ spaces, fibrewise pairwise $bi - T_1$ spaces, fibrewise pairwise $bi - R_0$ spaces, fibrewise pairwise bi-Hausdorff spaces, fibrewise pairwise functionally *bi*-Hausdorff spaces, fibrewise pairwise *bi*-regular spaces, fibrewise pairwise completely *bi*-regular spaces, fibrewise pairwise *bi*-normal spaces and fibrewise pairwise functionally *bi*-normal spaces. In addition we offer some results concerning it.

2010 MSC: 55R70, 54C05,54C08,54C10, 54D10, 54D15. [DOI: 10.22401/ANJS.00.1.21]

Keywords: Fibrewise bitopological spaces, Fibrewise pairwise $bi-T_0$ spaces, Fibrewise pairwise $bi-T_1$ spaces, Fibrewise pairwise bi- R_0 spaces, fibrewise pairwise bi-Hausdorff spaces, Fibrewise pairwise *bi*-regular spaces and fibrewise pairwise *bi*-normal spaces.

1. Introduction

In order to begin the category in the classification of fibrewise (briefly F.W.) sets over a given set, named the base set, which say B. A F.W. set over B consest of a function $p: M \rightarrow B$, that is named the projection on the set M. The fibre over b for every point b of Bis the subset $M_b = p^{-1}(b)$ of M. Since we do not require p is surjectve, the fibre Perhaps, will be empty, also, for every B^* subset of B we considered $M_{B^*} = p^{-1}(B^*)$ like a F.W. set with the projection determined by p over B^* .

The another notation $M \mid B^*$ is some time fitting. We considered for every set T, the Cartesian product $B \times T$, by the first projection like a F.W. set B.

Definition 1.1, [4]:

If M and N with projections p_M and p_N , respectively, are F.W. sets over B, a function $\varphi: M \to N$ is named F.W. function if $p_N \circ \varphi =$ p_M , or $\varphi(M_h) \subset N_h$ for every $b \in B$.

Observe that a F.W. function $\varphi: M \to N$ over B limited by restriction, a F.W. function $\varphi_{B^*}: M_{B^*} \to N_{B^*}$ over B^* for every subset B^* of В.

Definition 1.2, [4]:

Let (B, Λ) be a topological space. The F.W. topology on a F.W. set M over B mean any topology on M makes the projection p is continuous.

Remark 1.3, [4]:

- (a) The coarsest such topology is the topology made by p, in which the open sets of M are exactly the inverse image of the open sets of B; this is named F.W. indiscrete topology.
- (b) The F.W. topological space over B is defined to be a F.W. set over B with a F.W. topology.

We consider the topology product $B \times_B T$, for every topological space T, like a F.W. topological spaces over B by the first projection. The equivalences in the type of F.W. topological spaces are named F.W. topological equivalences. We say that M is trivial, as a F.W. topological spaces over B, if for some topological space T, M is F.W. topologically equivalent to $B \times_B T$. In F.W. topology the word neighborhood (briefly nbd) is used in exactly in the similar sense like it is in ordinary topology, but the words F.W. basic may want some details, hence let M be F.W. topological space over B, if x is a point of M_b ; $b \in B$, describe a family N(x) of nbds of x in *M* as F.W. basic if for each nbd *U* of *x* where $M_W \cap V \subset U$, for a few member V of N(x) and nbd W of b in B. For example, as in the topological product $B \times T$, where T is a topological space, the family of Cartesian products $B \times N(t)$, where N(t) runs through

the nbds of t, is F.W. basic for (b, t). Otherwise we follow closely James [4], Engelking [3] and Bourbaki [2].

Definition 1.4, [4]:

The F.W. function $\varphi: M \to N$, where *M* and *N* are F.W. topological spaces over *B* is named:

- (a) Continuous if for every $x \in M_B$; $b \in B$, the inverse image of every open set of $\varphi(x)$ is an open set of x.
- (b) Open if for every x ∈ M_B; b ∈ B, the direct image of every open set of x is an open set of φ(x).

Definition 1.5, [3]:

Assume we are given a topological space M, a family $\{\varphi_s\}_{s\in S}$ of continuous functions, and a family $\{N_s\}_{s\in S}$ of topological spaces where $\varphi_s : M \to N_s$ the function transfer $x \in M$ to the point $\{\varphi_s \ (x)\} \in \prod_{s\in S} N_s$ is continuous, it is named the diagonal of the functions $\{\varphi_s\}_{s\in S}$ and is denoted by $\Delta_{s\in S}\varphi_s$ or $\Delta \varphi_1 \Delta \varphi_2 \Delta ... \Delta \varphi_k$ if $S = \{1, 2, ..., k\}$.

Definition 1.6, [4]:

The F.W. topological space (M, τ) over (B, Λ) is named F.W. closed, (resp. F.W. open) if the projection p is closed (resp. open).

The bitopological spaces study was first created by Kelly [5] in 1963 and after that a large number of researches have been completed to generalize the topological ideas to bitopological setting. In this research (M, τ_1, τ_2) and (N, σ_1, σ_2) (or briefly, M and N) always mean bitopological spaces on which no separation axioms are supposed unless clearly stated. By τ_i -open (resp., τ_i -closed), we shall mean the open (resp., closed) set with respect to τ_i in *M*, where i = 1,2. *A* is open (resp., closed) if it is both τ_1 -open (resp., τ_1 -closed), τ_2 -open (resp., τ_2 -closed) in *M*. As well as, we built on some of the result in [1, 6, 9, 10, 11]. Otherwise we go behind closely I. M. James [4], R. Engelking [3] and N. Bourbaki [2].

Definition 1.7, [5]:

The triple (M, τ_1, τ_2) where *M* is a nonempty set and τ_1 and τ_2 are topologies on *M* is named bitopological spaces.

Definition 1.8, [5]:

A function $\varphi: (M, \tau_1, \tau_2) \to (N, \sigma_1, \sigma_2)$ is said to be τ_i -continuous (resp. τ_i -open and τ_i closed), if the functions $\varphi: (M, \tau_i) \to (N, \sigma_i)$ are continuous (resp. open and closed), φ is named continuous (resp. open and closed) if it is τ_i -continuous (resp. τ_i -open and τ_i -closed) for every i = 1,2.

Definition 1.9, [8]:

Let $(B, \Lambda_1, \Lambda_2)$ be a bitopological space. The F.W. bitopology on a F.W. set *M* over *B* mean any bitopology on *M* makes the projection *p* is continuous.

Definition 1.10, [7]:

A bitopological space (M, τ_1, τ_2) is said to be pairwise T_0 space if for every pair of points *x* and *y* such that $x \neq y$ there exists a τ_i -open set containing *x* but not containing *y* or a τ_j open set containing *y* but not containing *x*, where $i, j = 1, 2, i \neq j$.

2. Fibrewise pairwise bi- T_0 , pairwise bi- T_1 , pairwise bi- R_0 , and pairwise bi-Hausdorff spaces.

The concepts of pairwise open sets have an important role in F.W. separation axioms. By using these concepts we can construct many several F.W. separation axioms. Now we introduce the versions of F.W. pairwise bi- T_0 , F.W. pairwise bi- T_1 , F.W. pairwise bi- R_0 , and F.W. pairwise bi-Hausdorff spaces as follows.

Definition 2.1:

Let (M, τ_1, τ_2) be F.W. bitopological space over $(B, \Lambda_1, \Lambda_2)$. Then *M* is named F.W. pairwise $bi-T_0$ if whenever $x, y \in M_b$; $b \in B$ and $x \neq y$, either there exists a τ_i -open set *U* of *x* which does not contain *y* in *M* or τ_j -open set *V* of *y* which does not contain *x* in *M*, where $i, j = 1, 2, i \neq j$.

Remark 2.2:

- (a) (M, τ_1, τ_2) is F.W. pairwise $bi-T_0$ space iff each fiber M_b is pairwise $bi-T_0$ space.
- (b) Subspaces of F.W. pairwise $bi-T_0$ spaces are F.W. pairwise $bi-T_0$ spaces.
- (c)The F.W. bitopological products of F.W. pairwise $bi-T_0$ spaces with the family of F.W. pairwise projections are F.W. pairwise $bi-T_0$ spaces.

For sure anyone can makes a F.W. version of the pairwise $bi-T_1$ space in a similar way. Let (M, τ_1, τ_2) be F.W. bitopological space over $(B, \Lambda_1, \Lambda_2)$. Then M is named F.W. pairwise *bi-T1* if whenever $x, y \in M_b$; $b \in B$ and $x \neq y$, there exist a τ_i -open sets U, and a τ_i -open set V in M such that $x \in U, y \notin U$ and $x \notin V, y \in V, i, j = 1, 2, i \neq j$. But it turns out that there is no real use for this in what we are going to do. In its place we formulate some use of a new axiom "The axiom is that every τ_i - open set contains the τ_i -closure of each of its points", and use the word pairwise $bi-R_0$ space. This is correct for pairwise $bi-T_1$ spaces and for pairwise *bi*-regular spaces. Thinking of it like a weak structure of pairwise biregularity. For example, indiscrete spaces are pairwise bi- R_0 spaces. The F.W. version of the pairwise bi- R_0 axiom as the following.

Definition 2.3:

A F.W. bitopological space (M, τ_1, τ_2) over $(B, \Lambda_1, \Lambda_2)$ is named F.W. pairwise bi- R_0 if for every $x \in M_b$; $b \in B$, and every τ_i -open set V of x in M, there exists a nbd W of b in Bwhere V is containing the τ_j - closure of $\{x\}$ in M_W is (i.e., $M_W \cap \tau_j$ - $Cl\{x\} \subset V$) where $i, j = 1, 2, i \neq j$.

For example, $(B, \Lambda_1, \Lambda_2) \times_B (T, \tau_1, \tau_2)$ is F.W. pairwise bi- R_0 space for all pairwise bi- R_0 spaces T.

Remark 2.4:

- (a) The nbds of x are given by a F.W. basis it is enough if the condition in Definition (2.3) is satisfied for every F.W. basic nbds.
- (b) If (M, τ₁, τ₂) is F.W. pairwise bi-R₀ space over (B, Λ₁, Λ₂), then for each subspace (B*, Λ₁*, Λ₂*) of (B, Λ₁, Λ₂) (M_B*, τ₁*, τ₂*) is F.W. pairwise bi-R₀ space over B*.

Proposition 2.5:

Let $\varphi : M \to M^*$ be a continuous F.W. embedding function, where (M, τ_1, τ_2) and $(M^*, \tau_1^*, \tau_2^*)$ are F.W. bitopological spaces over $(B, \Lambda_1, \Lambda_2)$. If M^* is F.W. pairwise bi- R_0 then so is M.

Proof:

Let V be a τ_i -open set of x in M, where $x \in M_b$; $b \in B$. Then $V = \varphi^{-1}(V^*)$, where V* is a τ^*_i -open set of $x^* = \varphi(x)$ in M*. Because M* is F.W. pairwise bi- R_0 then we have a nbd. W

of *b* in *B*, where $M^*_W \cap \tau_j^* - Cl\{x^*\} \subset V^*$. Hence, $M_W \cap \tau_j - Cl\{x\} \subset \varphi^{-1}(M^*_W \cap \tau_j^* - Cl\{x^*\}) \subset \varphi^{-1}(V^*) = V$ and hence *M* is F.W. pairwise *bi*- R_0 where *i*, *j* = 1, 2,, *i* \neq *j*.

The class of F.W. pairwise bi_R_0 spaces is finitely multiplicative, like in the following.

Proposition 2.6:

If $\{(M_r, \tau_{1r}, \tau_{2r})\}$ is a finite family of F.W. pairwise bi- R_0 spaces over B. Then the F.W. bitopological product $M = \prod_B M_r$ is F.W. pairwise bi- R_0 .

Proof:

Let $x \in M_b$; $b \in B$. Consider a τ_i -open set $V = \prod_B V_r$ of x in M, where V_r is a τ_{ir} -open set of $\pi_r(x) = x_r$ in M_r for each index r. Since M_r is F.W. pairwise bi- R_0 then, we have a nbd W_r of b in B where $(M_r | W_r) \cap \tau_{jr}$ - $Cl\{x_r\} \subset V_r$. Then we regard W as a nbd of b where W is an intersection of W_r and $M_W \cap \tau_j$ - $Cl\{x\} \subset V$ and hence $M = \prod_B M_r$ is F.W. pairwise bi- R_0 where $i, j = 1, 2, , i \neq j$.

The similar conclusion holds for infinite F.W. products provided all of the factors is F.W. nonempty.

Proposition 2.7:

Assume that $\varphi: M \to N$ is closed, continuous F.W. surjection function, where (M, τ_1, τ_2) and (N, σ_1, σ_2) are F.W. bitopological spaces over *B*. If *M* is F.W. pairwise *bi*-*R*₀ then so is *N*.

Proof:

Assume that V is a σ_i -open set of y in N, where $y \in N_b$; $b \in B$, choose $x \in \varphi^{-1}(y)$. Then $U = \varphi^{-1}(V)$ is a τ_i -open set of x in M. because M is F.W. pairwise bi- R_0 , then we have a nbd W of b in B, where $M_W \cap \tau_j - Cl\{x\} \subset U$. Therefore $N_W \cap \varphi(\tau_j - Cl\{x\}) \subset \varphi(U) = V$. because φ is closed, $\varphi(\tau_j - Cl\{x\}) = \sigma_j - Cl(\varphi\{x\})$. Hence $NW \cap \sigma_j - Cl(\varphi\{x\}) \subset V$ and N is F.W. pairwise bi- R_0 where $i, j = 1, 2, i \neq j$.

Now we introduce the version of F.W. pairwise *bi*-Hausdorff spaces like the following.

Definition 2.8:

A F.W. bitopological space (M, τ_1, τ_2) over $(B, \Lambda_1, \Lambda_2)$ is named F.W. pairwise *bi*- Hausdorff if whenever $x, y \in M_b$; $b \in B$ and $x \neq y$ there exist a disjoint pair of τ_i -open set U of x and τ_j -open set V of y in M, where $i, j = 1, 2, i \neq j$.

For example, $(B, \Lambda_1, \Lambda_2) \times_B (T, \tau_1, \tau_2)$ is F.W. pairwise *bi*-Hausdorff space for all pairwise *bi*-Hausdorff spaces *T*.

Remark 2.9:

If (M, τ_1, τ_2) is F.W. pairwise *bi*-Hausdorff space over $(B, \Lambda_1, \Lambda_2)$ then M_B^* is F.W. pairwise *bi*-Hausdorff over B^* for every subspace B^* of *B*. Specially the fibers of (M, τ_1, τ_2) are pairwise *bi*-Hausdorff spaces. On the other hand a F.W. bitopological space with pairwise *bi*-Hausdorff fibres is not necessarily pairwise *bi*-Hausdorff.

Example:2.10:

Let M={1, 2, 3}, $\tau_1 = \{M, \varphi, \{1\}, \{1, 2\}\}, \tau_2 = \{M, \varphi, \{1\}, \{1, 3\}\}$. Let B={a, b}, $\Lambda_1 = \{B, \varphi, \{a\}\}, \Lambda_2 = I$. Let p: M \rightarrow B where: p (1) = a, p (2) = b = p (3). Then, we have $M_b = \{2, 3\}, \tau_{1Mb} = \{M_b, \varphi, \{2\}\}, \tau_{2Mb} = \{M_b, \varphi, \{3\}\}$. Then $\exists \tau_{1Mb}$ -open set U = {2} where 2 $\in U, 3 \notin U$ and there exist τ_{2Mb} open set V = {3} where 3 $\in V, 2 \notin V$, where $U \cap V = \varphi$. But M is not pairwise *bi*-Hausdorff since: 2 and $3 \in M$ and $2 \neq 3$, and there is no disjoint pair of open sets of 2 and 3.

Proposition 2.11:

The F.W. bitopological space (M, τ_1, τ_2) over $(B, \Lambda_1, \Lambda_2)$ is F.W. pairwise *bi*-Hausdorff iff the diagonal embedding $\Delta: M \to M \times_B M$ is $\tau_i \times_B \tau_i$ -closed.

Proof:

(⇒) Let $x, y \in Mb$; $b \in B$ and $x \neq y$. Since $\Delta(M)$ is $\tau_i \times_B \tau_i$ -closed in $M \times_B M$, then (x, y) a point of the complement, admits a F.W. product $\tau_i \times_B \tau_j$ -open set $U \times_B V$ which does not meet $\Delta(M)$, and then U, V are disjoint pair of x, y. Where U is τ_i -open set of x, and V is τ_j -open set of y, where $i, j = 1, 2, i \neq j$.

 (\Leftarrow) The reverse direction is similar.

Subspaces of F.W. pairwise *bi*-Hausdorff spaces are F.W. pairwise *bi*-Hausdorff spaces. Actuality we have.

Proposition 2.12:

Assume that $\varphi : M \to M^*$ is a continuous embedding F.W. function, where (M, τ_1, τ_2) and $(M^*, \tau_1^*, \tau_2^*)$ are F.W. bitopological spaces over $(B, \Lambda_1, \Lambda_2)$. If M^* is F.W. pairwise *bi*-Hausdorff then so is *M*.

Proof:

Let $x, y \in Mb$; $b \in B$ and $x \neq y$. Then $\varphi(x), \varphi(y) \in M_b^*$ are distinct, since M^* is F.W. pairwise *bi*-Hausdorff, then we have a τ_i^* -open sets U^* of $\varphi(x)$ and τ_j^* -open set V^* of $\varphi(y)$ in M^* which are disjoint. Because φ is continuous, the inverse images $\varphi^{-1}(U^*)=U$, $\varphi^{-1}(V^*) = V$, such that U is τ_i -open set of x and V is τ_j -open set of y in M which are disjoint and so M is F.W. pairwise *bi*-Hausdorff where $i, j = 1, 2, i \neq j$.

Proposition 2.13:

Let $\varphi : M \to N$ be a continuous F.W. function, where (M, τ_1, τ_2) and (N, σ_1, σ_2) are F.W. bitopological spaces over $(B, \Lambda_1, \Lambda_2)$. If *N* is F.W. pairwise *bi*-Hausdorff then the F.W. graph $\Gamma : M \to M \times B N$ of φ is a $\tau_i \times_B \sigma_j$ closed embedding.

Proof:

The F.W. graph is defined in the similar method like the ordinary graph, but with values in the F.W. product, hence the figure shown below is commutative.

Fig. (1.1) Diagram of Proposition 2.13.

Since $\Delta(N)$ is $\sigma_i \times_B \sigma_i$ -closed in $N \times BN$, by Proposition (2.11), so $\Gamma(M) = (\varphi \times idN)^{-1}(\Delta(N))$ is $\tau_i \times_B \sigma_j$ -closed in $M \times_B N$, as asserted, where $i, j = 1, 2, i \neq j$.

The category of F.W. pairwise *bi*-Hausdorff spaces is multiplicative, like the following sense.

Proposition 2.14:

Assume that $\{(Mr, \tau_{1r}, \tau_{2r})\}$ is a family of F.W. pairwise *bi*-Hausdorff spaces over

 $(B, \Lambda_1, \Lambda_2)$. The F.W. bitopological product $M = \prod_B M_r$ with the family of F.W. projection $\pi r : M = \prod_B M_r M \to M_r$ is F.W. pairwise *bi*-Hausdorff.

Proof:

Let $x, y \in Mb$; $b \in B$ and $x \neq y$. Then $\pi_r(x) = x_r \neq \pi_r(y) = y_r$ for some index r. Because M_r is F.W. pairwise bi-Hausdorff, then we have a τ_{ir} -open set U_r of x_r , and τ_{jr} open set V_r of y_r in M_r which are disjoint. Because π_r is continuous, the inverse images U, V are disjoint τ_i -open and τ_j -open sets respectively of x, y in M, where i, j = $1, 2, i \neq j$.

The pairwise functionally version of the F.W. pairwise *bi*-Hausdorff axiom is stronger than the non pairwise functional version but its properties are quite like. Here and in another place we use I to mean the closed unit interval [0, 1] in the real line \mathbb{R} .

Definition 2.15:

A F.W. bitopological space (M, τ_1, τ_2) over $(B, \Lambda_1, \Lambda_2)$ is F.W. pairwise functionally *bi*-Hausdorff if for every $x, y \in M_b$; $b \in B$ and $x \neq y$, there exists a nbd W of b in B and disjoint pair τ_i -open sets U of x and τ_j -open set V of y in M and a continuous function $\lambda: M_W \to I$ where $M_b \cap U \subset \lambda^{-1}(0)$ and $M_b \cap V \subset \lambda^{-1}(1)$ where $i, j = 1, 2, i \neq j$.

For example, $(B, \Lambda_1, \Lambda_2) \times_B (T, \tau_1, \tau_2)$ is F.W. pairwise functionally *bi*-Hausdorff space for each pairwise functionally *bi*-Hausdorff spaces *T*.

Remark 2.16:

If (M, τ_1, τ_2) is F.W. pairwise functionally bi-Hausdorff space over $(B, \Lambda_1, \Lambda_2)$ then M_B^* is F.W. pairwise functionally bi-Hausdorff over B^* for every subspace B^* of B. In particular the fibres of M are pairwise functionally bi-Hausdorff spaces.

Subspaces of F.W. pairwise functionally *bi*-Hausdorff spaces are F.W. pairwise functionally *bi*-Hausdorff spaces. Actuality we have.

Proposition: 2.17.

Assume that $\varphi : M \to M^*$ is a continuous embedding F.W. function, where (M, τ_1, τ_2) and $(M^*, \tau_1^*, \tau_2^*)$ are F.W. bitopological spaces over $(B, \Lambda_1, \Lambda_2)$. If M^* is F.W. pairwise functionally *bi*-Hausdorff then so is *M*. *Proof:*

Let $x, y \in M_b$ and $x \neq y; b \in B$. Then $\varphi(x) = x^*, \varphi(y) = y^* \in M_b^*, x^* \neq y^*$. Since M^* is F.W. pairwise functionally *bi*-Hausdorff, then we have a nbd *W* of *b* in *B* and disjoint pair of τ_i^* -open set U^* of x^* and τ_j^* -open set V^* of y^* and a continuous function $\lambda^*: M^* \mid W \to I$ where $M_b^* \cap U^* \subset (\lambda^*)^{-1}(0)$ and $M_b^* \cap V^* \subset (\lambda^*)^{-1}(1)$. Now, since φ is continuous, $\varphi^{-1}(U^*) = U$ and $\varphi^{-1}(V^*) = V$ are disjoint pair of τ_i -open set of *x* and τ_j open set of *y* respectively and the continuous function λ where $\lambda = \lambda^* o \varphi: M_W \to I$ such that $M_b \cap U \subset \lambda^{-1}(0)$ and $M_b \cap V \subset \lambda^{-1}(1)$, where $i, j = 1, 2, i \neq j$.

Furthermore the category of F.W. pairwise functionally *bi*-Hausdorff spaces is multiplicative, as the following.

Proposition 2.18:

Assume that $\{(M_r, \tau_{1r}, \tau_{2r})\}$ is a family of F.W. pairwise functionally *bi*-Hausdorff spaces over $(B, \Lambda_1, \Lambda_2)$. The F.W. bitopological product $M = \prod_B M_r$ with the family of F.W. projection $\pi r : M = \prod_B M_r \rightarrow M_r$ is F.W. pairwise functionally *bi*-Hausdorff.

Proof:

Let $x, y \in M_b$; $b \in B$, and $x \neq y$. Then $\pi_r(x) = x_r, \pi_r(y) = y_r \in (M_r)_h$ for some index r where $x_r \neq y_r$. Since Mr is F.W. pairwise functionally bi-Hausdorff, then, we have a nbd W_r of b in B and disjoint pair of τ_{ir} -open set U_r of x_r , and τ_{jr} -open set V_r of y_r and a continuous function $\lambda: M_r \mid W_r \to I$ such that $(M_r)_h \cap U_r \subset \lambda^{-1}(0)$ and $(M_r)_h \cap V_r \subset$ $\lambda^{-1}(1)$. Now the intersection of W_r is a nbd W of b in B, and since π_r is continuous, then $\pi_r^{-1}(U_r) = U$ and $\pi_r^{-1}(V_r) = V$ are disjoint pair of τ_i -open set of x and τ_i -open set of y respectively and the continuous function Ω where $\Omega = \lambda o \pi_r : M_W \to I$ where $M_b \cap U \subset$ $\Omega^{-1}(0)$ and $M_b \cap V \subset \Omega^{-1}(1)$ where i, j = $1, 2, i \neq j$.

3. Fibrewise pairwise *bi*-regular and pairwise *bi*-normal spaces

We at this time go on to consider the F.W. versions of the advanced pairwise separation

axioms, first with F.W. pairwise *bi*-regularity and F.W. pairwise completely *bi*-regularity.

Definition: 3.1.

The F.W. bitopological space (M, τ_1, τ_2) over $(B, \Lambda_1, \Lambda_2)$ is named F.W. pairwise *bi*regular if for every $x \in M_b$; $b \in B$, and for every τ_i -open set *V* of *x* in *M*, there exists a nbd. *W* of *b* in *B*, and a τ_i - pen set *U* of *x* in *MW* such that *V* is containing the τ_j -closure of *U* in *MW* (*i.e.*, $M_W \cap \tau_j - Cl(U) \subset V$), where $i, j = 1, 2, i \neq j$.

For example, trivial F.W. spaces with pairwise *bi*-regular fibre are F.W. pairwise *bi*-regular.

Remark 3.2:

- (a) The nbds of x are given by a F.W. basis it is enough if the condition in Definition (3.1) is satisfied for every F.W. basic nbds.
- (b) If (M, τ₁, τ₂) is F.W. pairwise bi-regular space over (B, Λ₁, Λ₂) then (M^{*}_B, τ^{*}₁, τ^{*}₂) is F.W. pairwise bi-regular space over (B^{*}, Λ^{*}₁, Λ^{*}₂) for every subspace B^{*} of B.

Subspaces of F.W. pairwise bi-regular spaces are F.W. pairwise bi-regular spaces. Actuality we have.

Proposition 3.3:

Assume that $\varphi : M \to M^*$ is a continuous embedding F.W. function, where (M, τ_1, τ_2) and $(M^*, \tau_1^*, \tau_2^*)$ are F.W. bitopological spaces over $(B, \Lambda_1, \Lambda_2)$. If M^* is F.W. pairwise *bi*-regular then so is M.

Proof:

Let V be a τ_i -open set of x in M, where $x \in M_b$; $b \in B$. Then $V = \varphi^{-1}(V^*)$, where V^* is a τ_i^* -open set of $x^* = \varphi(x)$ in M_b^* . Because M* is F.W. pairwise *bi*-regular then, we have a nbd W of b in B and a τ_i^* -open set U^* of x^* in M_W^* where $M_W^* \cap \tau_j^* - cl(U^*) \subset V^*$. Then $U = \varphi^{-1}(U^*)$ is a τ_i -open set of x in M_W such that $M_W \cap \tau_j - Cl(U) \subset V$, hence M is F.W. pairwise *bi*-regular, where $i, j = 1, 2, i \neq j$ as required.

The class of F.W. pairwise *bi*-regular spaces is F.W. multiplicative, like in the following.

Proposition 3.4:

Assume that $\{(M_r, \tau_{1r}, \tau_{2r})\}$ is a finite family of F.W. pairwise *bi*-regular spaces over

B. The F.W. bitopological product $M = \prod_B M_r$ is F.W. pairwise *bi*-regular. *Proof:*

Consider a τ_i -open set $V = \prod_B V_r$ of x in M, where $x \in M_b$; $b \in B$ and V_r is a τ_{ir} -open set of $\pi_r(x) = x_r$ in M_r for each index r. Since M_r is F.W. pairwise *bi*-regular we have a nbd. W_r of b in B, and a τ_{ir} -open set U_r of x_r in $M_r | W_r$ such that the τ_{jr} -closure of U_r in $M_r | W_r$ is contained in V_r . (i. e. $(M_r | W_r) \cap$ $\tau_{jr} - Cl(U_r) \subset V_r$). Then we regard W as a nbd of b in B, where W is the intersection of W_r , and $U = \prod_B U_r$ is a τ_i -open set of x in M_W where the τ_j -closure of U in M_W is contained in V. (i. e. $M_W \cap \tau_j - cl(U) \subset V$), and so $M = \prod_B M_r$ is F.W. pairwise *bi*-regular, where $i, j = 1, 2, i \neq j$.

The similar conclusion holds for infinite F.W. products provided every of the factors is F.W. non-empty.

Proposition 3.5:

Assume that $\varphi : M \to N$ is a closed, open and continuous F.W. surjection function, where (M, τ_1, τ_2) and (N, σ_1, σ_2) are F.W. bitopological spaces over *B*. Then *M* is F.W. pairwise *bi*-regular iff *N* is F.W. pairwise *bi*regular.

Proof:

(\Rightarrow) Let *V* be a σ_i -open set of *y* in *N* where $y \in N_b$; $b \in \Box B$, choose $x \in \varphi^{-1}(y)$. Then $U = \varphi^{-1}(V)$ is a τ_i -open set of *x* in *M*. Because *M* is F.W. pairwise *bi*-regular, we have a nbd W of *b* in *B*, and a τ_i - open set U^* of *x* such that $M_W \cap \tau_j - cl(U^*) \subset U$. Then $N_W \cap \varphi(\tau_j - cl(U^*)) \subset V$. Because φ is closed, $\varphi(\tau_j - cl(U^*)) = \sigma_j - cl(\varphi(U^*))$ and because φ is open, then $\varphi(U^*)$ is a σ_i -open set of *y*. Hence *N* is F.W. pairwise *bi*-regular, where *i*, *j* = 1, 2, *i* \neq *j*, as asserted. (\Leftarrow) By similar way of first direction.

The pairwise functionally version of the F.W. pairwise *bi*-regularity axiom is stronger than the non-pairwise functionally version but its properties are quite like. In the ordinary theory the word completely *bi*-regular is all the time used instead of functionally *bi*-regular and we widen this usage to the F.W. theory.

Definition 3.6:

A F.W. bitopological space (M, τ_1, τ_2) over $(B, \Lambda_1, \Lambda_2)$ is named F.W. pairwise completely *bi*-regular if for every $x \in M_b$; $b \in B$, and for every τ_i -open set *V* of *x* there exists a nbd *W* of *b* in *B* and a τ_j -open set *U* of *x* in M_W and a continuous function $\lambda: (M_W, \tau_{1W}, \tau_{2W}) \rightarrow I$ such that $M_b \cap U \subset$ $\lambda^{-1}(0)$ and $M_W \cap (M_W - V) \subset \lambda^{-1}(1)$, where $i, j = 1, 2, i \neq j$.

For example, $(B, \Lambda_1, \Lambda_2) \times_B (T, \tau_1, \tau_2)$ is F.W. pairwise completely *bi*-regular space for every pairwise completely *bi*-regular spaces T.

Remark: 3.7.

- (a) The nbds. of x are given by a F.W. basis it is enough if the condition in Definition (3.6) is satisfied for every F.W. basic nbds.
- (b) If (M, τ₁, τ₂) is F.W. pairwise completely bi-regular space over (B, Λ₁, Λ₂) then (M^{*}_B, τ^{*}₁, τ^{*}₂) is F.W. Pairwise completely bi-regular space over (B*, Λ^{*}₁, Λ^{*}₂) for every subspace B* of B.

Subspaces of F.W. pairwise completely *bi*-regular spaces are F.W. pairwise completely *bi*-regular spaces. In fact we have.

Proposition 3.8:

Assume that $\varphi: M \to M^*$ is a continuous embedding F.W. function, where (M, τ_1, τ_2) and $(M^*, \tau_1^*, \tau_2^*)$ are F.W. bitopological spaces over $(B, \Lambda_1, \Lambda_2)$. If M^* is F.W. pairwise completely *bi*-regular then so is *M*.

Proof:

Let V be a τ_i -open set of x in M where $x \in M_b$; $b \in B$, then $\varphi(x) = x^* \in M_b^*$ and $V = \varphi^{-1}(V^*)$ is a τ_i^* -open set of x^* . Because M^* is F.W. pairwise completely *bi*-regular, then we have a nbd. W of b in B and τ_j^* -open set U^* of x^* and a continuous function $\lambda: M_W^* \to I$ such that $M_b^* \cap U^* \subset \lambda^{-1}(0)$ and $M_W^* \cap (M_W^* - V^*) \subset \lambda^{-1}(1)$. Now, because φ is continuous, then $\varphi^{-1}(U^*) = U$ is τ_i -open set of x in M_W and the continuous function $\Omega = \lambda o \varphi$ such that $\Omega: M_W \to I$ and $M_b \cap U \subset \Omega^{-1}(0)$ and $M_W \cap (M_W - V) \subset \Omega^{-1}(1)$, where $i, j = 1, 2, i \neq j$.

The class of F.W. pairwise completely *bi*-regular spaces is finitely multiplicative, like in the following.

Proposition 3.9:

Assume that $\{(M_r, \tau_{1r}, \tau_{2r})\}$ is a finite family of F.W. pairwise completely *bi*-regular spaces over $(B, \Lambda_1, \Lambda_2)$. The F.W. bitopological product $M = \prod_B M_r$ is F.W. pairwise completely *bi*-regular.

Proof:

Let $x \in M_b$; $b \in B$. Consider a F.W. τ_i open set $\prod_B V_r$ of x in M, where V_r is a τ_{ir} open set of $\pi_r(x) = x_r$ in M_r for all index r. Because M_r is F.W. pairwise completely biregular, we have a nbd. W_r of b in B, and a τ_{jr} open set U of x_r in M_r and a continuous function $\lambda_r: (M_r)_W \to I$ where $(M_r)_b \cap U \subset \lambda_r^{-1}(0)$ and $(M_r)_W \cap ((M_r)_W - V_r) \subset \lambda_r^{-1}(1)$. Then we regard W like a nbd of b in B where W is the intersection of W_r and $\lambda: M_W \to I \square$ is a continuous function where:

 $\lambda(\xi) = inf_{r=1,2,3,\dots,n}\{\lambda_r\xi_r\} \text{ for } \xi = (\xi_r) \in M_W.$ Since:

$$(M_r)_b \cap \pi_r^{-1}(U) \subset \pi_r^{-1}[(M_r)_b \cap U] \subset \pi_r^{-1}(\lambda^{-1}_r(0)) = (\lambda_r o \pi_r)^{-1}(0)$$

and

 $(Mr)_W \cap \pi_r^{-1}((M_r)_W - V_r) \subset \pi_r^{-1}[(M_r)_W \cap ((M_r)_W - V_r)] \subset \pi_r^{-1} (\lambda_r^{-1}(1))$ = $(\lambda_r o \pi_r)^{-1}(1).$

where $i, j = 1, 2, i \neq j$.

The similar conclusion holds for infinite F.W. products provided that all of the factors is F.W. non-empty.

Lemma 3.10:

Assume that $\varphi: M \to N$ is a closed, open F.W. surjection function, where *M* and *N* are F.W. bitopological spaces over *B*. Let $\alpha: M \to \mathbb{R}$ be a continuous real-valued function which is F.W. bounded above, in the sense that α is bounded above on each fibre of *M*. Then $\beta: N \to \mathbb{R}$ is continuous, where: $\beta(\eta) = \sup_{\xi \in \varphi^{-1}(n)} \alpha(\xi)$

$P(\eta) = (\eta) = (\eta)$

Proposition 3.11:

Assume that $\varphi : M \to N$ is a closed, open and continuous F.W. surjection function, where (M, τ_1, τ_2) and (N, σ_1, σ_2) are F.W. bitopological spaces over $(B, \Lambda_1, \Lambda_2)$. If *M* is F.W. pairwise completely *bi*-regular then so is *N*.

Proof:

Let V_y be a σ_i -open set of y in N, where $y \in N_b$; $b \in B$. Choose $x \in \varphi^{-1}(y)$, so that $V_x = \varphi^{-1}(V_y)$ is a τ_i -open set of x. Because M is F.W. pairwise completely bi-regular, we have a nbd. W of b in B, and a τ_j -open set U_x of x in M_W and a continuous function $\lambda: M_W \to I$ such that $M_b \cap U_x \subset \lambda^{-1}(0)$ and $M_W \cap (M_W - V_x) \subset \lambda^{-1}(1)$. Using Proposition lemma (3.10), we get a continuous function $\Omega: N_W \to I$ such that $N_b \cap U_y \subset \Omega^{-1}(0)$ and $N_W \cap (N_W - V_y) \subset \Omega^{-1}(1)$, where $i, j = 1, 2, i \neq j$.

Now we define the version of F.W. pairwise normal space like in the following.

Definition 3.12:

A F.W. bitopological space (M, τ_1, τ_2) over $(B, \Lambda_1, \Lambda_2)$ is named F.W. pairwise *bi*normal if for every $b \in B$ and every disjoint pair of τ_i -closed set *H*, and τ_j -closed set *K* of *M*, there exists a nbd. *W* of *b* in *B* and a disjoint pair of τ_j -open set *U*, and τ_i -open set *V* of $M_W \cap H, M_W \cap K$ in *MW*, where i, j = $1, 2, i \neq j$.

Remark 3.13:

If (M, τ_1, τ_2) is F.W. pairwise *bi*-normal space over $(B, \Lambda_1, \Lambda_2)$, then for each subspace B^* of B, $(M_B^*, \tau_1^*, \tau_2^*)$ is F.W. pairwise *bi*-normal space over $(B^*, \Lambda_1^*, \Lambda_2^*)$.

Closed subspaces of F.W. pairwise *bi*-normal spaces are F.W. pairwise *bi*-normal. Actuality we have.

Proposition 3.14:

Assume that $\varphi: M \to M^*$ is a closed, continuous embedding F.W. function where (M, τ_1, τ_2) and $(M^*, \tau_1^*, \tau_2^*)$ are F.W. bitopological spaces over *B*. If $(M^*, \tau_1^*, \tau_2^*)$ is F.W. pairwise *bi*-normal then so is (M, τ_1, τ_2) . **Proof:**

Let H, K be disjoint pair of τ_i -closed, and τ_j -closed sets of M and let $b \in B$. Then $\varphi(H), \varphi(K)$ are disjoint pair of τ_i^* -closed set and τ_j^* -closed set of M^* . Since M^* is F.W. pairwise *bi*-normal then, we have a nbd W of b in B and a τ_j^* -open set U^* and τ_i^* -open set V^* of $M_W^* \cap \varphi(H), M_W^* \cap \varphi(K)$, in M_W^* . $\varphi^{-1}(U^*) = U$ and $\varphi^{-1}(V^*) = V$ are disjoint

pair of τ_j -open and τ_i -open sets of $M_W \cap$ $H, M_W \cap K$ in M_W , where $i, j = 1, 2, i \neq j$.

Proposition: 3.15.

Let $\varphi: M \to N$ be a closed continuous F.W. surjection function, where (M, τ_1, τ_2) and (N, σ_1, σ_2) are F.W. bitopological spaces over $(B, \Lambda_1, \Lambda_2)$. Then (M, τ_1, τ_2) is F.W. pairwise *bi*-normal iff (N, σ_1, σ_2) is F.W. pairwise *bi*-normal.

Proof:

 (\Rightarrow) Let *H*, *K* be disjoint pair of σ_i -closed, and let σ_i -closed sets of Ν and b E B. $\varphi^{-1}(H), \varphi^{-1}(K)$ are disjoint pair of τ_i closed and τ_i -closed sets of M. because M is F.W. pairwise *bi*-normal then, we have a nbd. W of b in B and a disjoint pair of τ_i -open set and τ_i -open set U, V of $M_W \cap \varphi^{-1}(H)$ and $M_W \cap \varphi^{-1}(K)$. Because φ is closed then, the sets $N_W - \varphi(M_W - U)$, $N_W - \varphi(M_W - V)$ are open in N_W , and structure a disjoint pair of σ_i open, σ_i -open sets of $N_W \cap H$, $N_W \cap K$ in N_W , as required, where $i, j = 1, 2, i \neq j$. (\Leftarrow) By similar way of first direction.

Lastly, we define the version of F.W. pairwise functionally *bi*-normal space like in the following.

Definition: 3.16.

A F.W. bitopological space (M, τ_1, τ_2) over $(B, \Lambda_1, \Lambda_2)$ is named F.W. pairwise functionally *bi*-normal if for every $b \in B$ and every disjoint pair of τ_i -closed set *H*, and τ_j closed set *K* of *M*, there exists a nbd. *W* of *b* in *B* and a disjoint pair of τ_j -open set *U*, and τ_i open set *V* and a continuous function $\lambda: M_W \rightarrow I$ such that $M_W \cap H \cap U \subset \lambda^{-1}(0)$ and $M_W \cap K \cap V \subset \lambda^{-1}(1)$ in M_W , where i, j = $1, 2, i \neq j$.

For example, $(B, \Lambda_1, \Lambda_2) \times_B (T, \tau_1, \tau_2)$ is F.W. pairwise functionally *bi*-normal space when *T* is pairwise functionally *bi*-normal space.

Remark 3.17:

If (M, τ_1, τ_2) is F.W. pairwise functionally bi-normal space over $(B, \Lambda_1, \Lambda_2)$ then for every subspace B^* of B we have $(M_B^*, \tau_1^*, \tau_2^*)$ is F.W. pairwise functionally bi-normal space over $(B^*, \Lambda_1^*, \Lambda_2^*)$. Closed subspaces of F.W. pairwise functionally *bi*-normal spaces are F.W. pairwise functionally *bi*-normal. Actuality we have.

Proposition 3.18:

Assume that $\varphi: M \to M^*$ is a closed, continuous embedding F.W. function where (M, τ_1, τ_2) and $(M^*, \tau_1^*, \tau_2^*)$ are F.W. bitopological spaces over *B*. If M^* is F.W. pairwise functionally *bi*-normal then *M* is so. *Proof:*

Let *H*, *K* be disjoint pair of τ_i -closed and τ_i -closed sets of M and let $b \in B$. Then $\varphi(H), \varphi(K)$ are disjoint pair of τ_i^* -closed set and τ_i^* - closed set of M^* . Since M^* is F.W. pairwise functionally bi-normal we have a nbd W of b in B and a disjoint pair of τ_i^* -open set U and τ_i^* -open set V and a continuous function $\lambda: M_W^* \to I$ such that $M_W^* \cap \varphi(H) \cap U \subset$ $\lambda^{-1}(0)$ and $M_W^* \cap \varphi(K) \cap V \subset \lambda^{-1}(1)$ in M_W^* . Since φ is continuous, then $\varphi^{-1}(U), \varphi^{-1}(V)$ are τ_i -open set, τ_i -open set and the function, $\Omega = \lambda \circ \varphi$ is a continuous, $\Omega: M_W \to I$ such $M_W \cap H \cap \varphi^{-1}(U) \subset \Omega^{-1}(0)$ that and $M_W \cap K \cap \varphi^{-1}(V) \subset \Omega^{-1}(1)$ in M_W as required where $i, j = 1, 2, i \neq j$.

Proposition 3.19:

Assume that $\varphi: M \to N$ is a closed, open and continuous F.W. surjection function, where (M, τ_1, τ_2) and (N, σ_1, σ_2) are F.W. bitopological spaces over $(B, \Lambda_1, \Lambda_2)$. If (M, τ_1, τ_2) is F.W. pairwise functionally *bi*normal then so is (N, σ_1, σ_2) .

Proof:

Let *H*, *K* be disjoint pair of σ_i -closed, and σ_j -closed sets of *N* and let $b \in B$. Then $\varphi^{-1}(H), \varphi^{-1}(K)$ are disjoint pair of τ_i -closed and τ_j -closed sets of *M*. Because M is F.W. pairwise functionally *bi*-normal, then we have a nbd W of b in *B* and a disjoint pair of τ_j -open set and τ_i -open set *U*, *V* and a continuous function $\lambda: M_W \to I$ such that $M_W \cap \varphi^{-1}(H) \cap U \subset \lambda^{-1}(0)$ and $M_W \cap \varphi^{-1}(K) \cap V \subset \lambda^{-1}(1)$ in M_W . Hence a function $\Omega: N_W \to I$ is given by $\Omega(y) = \sup_{x \in \varphi^{-1}(y)} \lambda(x); y \in N_W$.

Because φ is open and closed, in addition to continuous, it leads to that Ω is continuous.

Hence $N_W \cap H \cap \varphi(U) \subset \Omega^{-1}(0)$ and $N_W \cap K \cap \varphi(V) \subset \Omega^{-1}(1)$ in M_W where $i, j = 1, 2, i \neq j$.

References

- [1] Abo Khadra A. A., Mahmoud S. S. and Yousif Y. Y., "Fibrewise near topological spaces", Journal of Computing, USA, Vo(14), Issue 5, pp. 223-230, May, 2012.
- [2] Bourbaki N., "General Topology", Part I, Addison Wesley, Reading, Mass, 1996.
- [3] Englking R., Outline of general topology, Amsterdam, 1989.
- [4] James I. M., "Fibrewise topology", Cambridge University Press, London 1989.
- [5] Kelly J. C., "Bitopological spaces", Proc. London Math. Soc., Vol.(13), pp.71-89, 1963.
- [6] Mahmoud S. S. and Yousif Y. Y., "Fibrewise near separation axioms", International Mathematical Forum, Hikari Ltd, Bulgaria, Vol.(7),No.(35),pp.1725-1736, 2012.
- [7] Murdeshwar M. G. and Naimpally S. A., "Quasi-uniform topological spaces Monograph", P. Noordoff Ltd., 1966.
- [8] Yousif Y. Y., Hussain L. A., "Fibrewise bitopological spaces", Journal of International Journal of Science and Research (IJSR), Vol. (6), pp 978-982, 2017.
- [9] Yousif Y. Y., Hussain M. A., "Fibrewise Soft Topolgical Spaces", International Journal of Science and Research (IJSR) Vol. (6), Issue 2, pp.1010-1019, February 2017.
- [10] Yousif Y. Y., "Some result on fibrewise Lindelöf and locally Lindelöf Topological space", Ibn Al-Haitham Journal science, Vol. (22), No. (3), pp. 191-198, 2009.
- [11] Yousif Y. Y., "Some result on fibrewise Topological space", Ibn Al-Haitham Journal for pure and Applied science. University of Baghdad-Collage of Education, Ibn Al-Haitham Vol. (21), No. 2, pp. 118-132, 2008.