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1- Introduction 

In this paper we will derive the sum 

formulas which we have improved for the 

numerical solution with Caputo derivatives. 

The approach is a generalization of the 

fractional Euler’s method. For the numerical 

solution of initial value problems of the form: 
α
* 0D y(t) = f(t, y(t)),  y(0) = y ,  0 < α  1  

where 
α

*D y(t)
 

denotes the Caputo fractional 

derivatives operator. As it is known from the 

usual methods of numerical analysis, the step 

size is fixed in that methods during the 

approach of solution, but still there are some 

methods may be used to decrease the topical 

truncation error [2,16], and among such 

methods is the variable step size method. The 

numerical solution of Fractional Differential 

Equations (FDE’s) will be found using this 

methods when may be consider as a new 

approach in this topic, the derivation of the 

modified fractional Euler’s method is 

motivated by a few classic and many recent 

applications of FDE’s. Among the classic 

problems we mention areas like the modeling 

of the behave of viscoelastic items in 

mechanics, [12]. More recently fractional 

calculus has been affected to statistical 

mechanics and continuum for viscoelasticity 

problems, fractional diffusion-wave equations 

and Brownian motion and many physical 

phenomena, [1]. Most nonlinear FDE’s don't 

have analytical solutions, so approximations 

and numerical techniques should be used. The 

decomposition method and the variational 

iteration method (VIM) [4,17] are 

comparatively new approaches to provides an 

analytic approximate solution to linear and 

nonlinear problems, and they are in particular 

valuable as tools for applied mathematicians 

and scientists [3], because they provide quick 

and visible symbolical terms of analytical 

solutions, as good as approximate numerical 

solutions to the linear and nonlinear 

differential equations [18] are relatively new 

approach to provides an analytical 

approximate solution to linear and nonlinear 

problems. The analytic solution of FDE’s in 

most cases is so difficult to be evaluated [8]; 

therefore numerical methods for solving 

FDE’s are more reliable than analytic methods 

[14], since such type of equations has some 

difficulties in their definition, which can't be 

dealing with it easily. Then we will study the 

numerical solutions of FDE’s using fractional 

Euler’s method and its related methods and 

thane connect these methods with variable step 

size method to produce more accurate results. 

 

2- Preliminaries 

With FDE’s, the idea of fractional 

derivatives we will that are adopted using 

Caputo’s definition that may be consider as a 

modification of the Riemann Liouville 

definition and has the benefit of dealing 

correctly with initial value problems in that the 

initial conditions are given in terms of the field 

variables and their integer order that is the case 
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in most physical processes. For the completion 

purpose of the used concepts, the Riemann 

Liouville fractional order derivative and 

integral and the Caputo derivative, will be only 

introduced next.  

 

Definition 1, [10]: 

A real function f(x), x > 0, in the space Cµ, 

µ  R if there are exists a real number p(> µ), 

such that f(x)  x
p
f1(x), where f1(x)  C[0, ∞), 

and is said in the space µ

mC  if and only if  

f 
(m) 

 Cµ, m  N. 

 

Definition 2, [17]: 

The Riemann Liouville fractional 

derivative of order q of a function f is defined 

to be: 

 
where   is a positive fractional number and n 

is a natural number, such that n 1<α n  . 

 

Definition 3, [7]:  
The Riemann Liouville fractional integral 

operator of order α 0,  of a function 

μf C , 1    , is defined as: 

 
 

   
α-1x

α

0

1
J f x = x t f t dt,

Γ α
  α > 0, x > 0  

   0J f x f x  

where Γ  is the classical gamma function 

m 1 < α m,   m  and 
m

μf C ,  The 

Riemann Liouville derivative has certain 

abuses when trying to model real-world 

phenomena with fractional differential 

equations. Hence, a modified fractional 

differential will be introduced next which is 

operator proposed by M. Caputo in his search 

on the theory of viscoelasticity, [9]. Caputo’s 

definition has the feature of dealing correctly 

with initial value problems, in that the initial 

conditions are given in stipulation of the field 

variables and their integer order that is the case 

in most physical processes, [6]. 

 

Definition 4, [11]: 

The fractional derivative of f(x) in the 

Caputo meaning is defined as: 

 

   
 

   
x

m-a-1α m-a m m

*

0

1
D f x J D f x m t f t dt

Γ m a
  


  

for m 1 < α m,  m and 
m

μf C  

 

Definition 5 (Generalized Mean Value 

Theorem), [13]:  

Assume that f(x)  C[0,a] and 

 α

*D f x C(0,a],  for 0 < α  1. Then: 

   
 

  α α

*

1
f x f 0+ + D f ξ x

Γ α
   

with 0 ≤ ξ ≤ x, ∀ x  (0, a].  

 
Definition 6 (Generalized Taylor’s formula), 

[16].  

Assume that  kα

*D f x C(0,a]  for k  

0,1,…, n + 1, where 0 < α  1 then: 

    
   

  
 

n+1 α
iαn

* n+1 αiα

*

i=0

D f ξx
f x = D 0+ + x

Γ(iα+1) Γ n+1 α+1


 
 ............ (1) 

with 0 ≤ ξ ≤ x, ∀ x  (0, a]. 

 

3- Fractional Euler’s Method 

For convenience, we subdivide the interval 

[0, a] into k subintervals [tn, tn+1] of equal step 

size h  a/k by using the nodes points tn  nh, 

for n   0, 1,..., k. Assume that y(t),  α

*D y t  

and  2α

*D y t  are continuous on [0, a] and use 

the formula (1) to expand y(t) about t  t0  0. 

For each value t, there is a value c1 so that: 

       
 

α
α

0 * 0

t
y t y t + D y t t +

Γ α+1
  

   
 

2α
2α

* 1

t
D y t c

Γ 2α+1
 .................. (2) 

when       α

* 0 0 0D y t t f t ,y t  and h  t1 

are substituted into equation (2), the result is 

an expression for y(t1): 

      
 

α

1 0 0 0

h
y t y t +f t ,y t +

Γ α+1
  

   
 

2α
2α

* 1

h
D y t c

Γ 2α+1
  ................. (3) 

If the step size h is chosen sufficiently 

small, then we may omission the second-order 

term (involving 
2αh ) and get: 
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   
 

  
α

1 0 0 0

h
y t y t + f t ,y t

Γ α+1
  ........... (4) 

The process is repeated and will generates 

a sequence of points an approximation to the 

solution y(t) at a special node point. The 

general fractional Euler’s method at tn+1  tn + 

h, is: 

   
 

  
α

n+1 n n n

h
y t y t + f t ,y t

Γ α+1
   ........ (5) 

for n  0, 1, ..., k  1. It is clear that if  

  1, then the explicit fractional Euler’s 

method (5) reduces to the classical Euler’s 

method, [15]. 

 

4- Modified Fractional Euler’s Method 

The modification the Fractional Euler’s 

method may be introduced in this section. And 

will be addressed as the modified Fractional 

Euler’s method from equation (3), 

   
 

 
α

n+1 n n

h
y t y t + y t +

Γ α+1
  

 
 

2α

1

h
y c

Γ 2α+1
  .............................. (6) 

when the flowing abbreviation is used, 

    j j nf t ,y t y t  and      2α

* 1 1D y t c y c  

derive equation (6) with integer order, yields: 

   
 

 
 

 
α 2α

n+1 n n 1

h h
y t y t + y t + y c

Γ α+1 Γ 2α+1
     

 
 

 
 

 
α 2α

n+1 n 1

h h
y t y t y c

Γ α+1 Γ 2α+1
       

  ........... (7) 

by reparation equation (7) in equation (6)  

   
 

 
 

 

 
 

 
 

α α

n+1 n n+1 n

2α 2α

1 1

h h
y t y t + [y t y t

Γ α+1 Γ α+1

h h
y c ]+ y c

Γ 2α+1 Γ 2α+1

  

 

 

 
 

 
  

 

   
 

 
 

α 2α

n n+1 n2

3α 2α

1 1

h h
y t + y t y t

Γ α+1 Γ α+1

h h
y c + y c

Γ α+1 Γ 2α+1 Γ 2α+1

  

 

 

If the step size h is chosen small enough, 

then we may neglect the second-order term 

(involving 
2α 3αh and h ) and get the implicit 

fractional Euler’s method. 

   
 

 
α

n+1 n n+1

h
y t y t + y t

Γ α+1
  

 
 

  
α

n n+1 n+1

h
y t + f t ,y t

Γ α+1
  .... (8) 

When     n+1 n+1 n+1f t ,y t y t  and hence, by 

adding equation (5) and (8) we get the implicit 

fractional Trapezoidal rule: 

   
 

     
α

n+1 n n n n+1 n+1

h
y t y t + f t ,y t f t ,y t

2Γ α+1


 ............ (9) 

by subtraction equation (5) from (8), we get: 

     n n n+1 n+1f t ,y t f t ,y t   .................... (10) 

by compensation equation (10) and (9) the 

explicit fractional trapezoidal rule is obtained: 

   
 

     
α

n+1 n n 1 n 1 n n

h
y t y t + f t ,y t f t ,y t

2Γ α+1
   

  .......... (11) 

 

5- Variable Step Size Method for Solving 

FDE’s 

In this section, the variable step size 

methods for solving FDE’s will be derived that 

may be considered as a new approach for 

solving FDE’s. In all fixed step-size methods, 

the local truncation error will depends on step 

size h and on the numerical method used. But, 

in variable step-size methods, we shall find the 

numerical solution yt  for the FDE,s given in 

equation (5), (8), (9) and (11), with 
0t 0y y  

that is accurate to within a pre-specified 

tolerance . Therefore, it turns out for 

acceptable effective estimates of the step-size, 

it is required to attain a custom local truncated 

error (tolerance) . The variable step-size 

method which will be consider here, is based 

upon comparing to between the estimates of 

the one and two steps of the numerical value 

of yt  at some time obtained by the numerical 

method with local truncation error term that is 

of the form pCh , where C is unknown 

constant and p is the order of the method. 

Assume that we started with the initial 

condition y0 with step-size h using certain to 

find the solution 
0

(1)
t h

y


 and 
0

(2)
t +h

y  using the 

step-size h and 
h

2
, respectively.  
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Let    

0+h 0+h

1 2

est t t
E = y y .

 
Hence if Eest.  , 

then there is no problem and one may consider 

0

(2)
t +h

y  as the solution at t0 + h. Otherwise if  

Eest. > , then one can to find another 

estimation of the step-size say hnew . If this 

approximation was accepted then this value of 

hnew will be used as the new value of h in the 

next step; if not, then it will be used as an old 

h and repeat similarly as above, [5]. 

 

Theorem (1): 

Suppose the 
0

(1)
t +h

y  and 
0

(2)
t +h

y  are the 

numerical solution obtained y the fractional 

Euler’s method given in equation (1) with step 

sizes    and 
αh

2
, respectively. If  is the 

tolerance and    

0+h 0+h

1 2

est t t
E y y  , then the new 

value of the step size is giving: 
1

α

new old

est

ε/2
h h

E

 
  
 

  .................................... (12) 

Proof:  
Suppose Y is the actual solution at t0+h, then 

   

0+h 0+h

α α1 2 h hαE y y ch c = cest
2 2t t

   
      
   
   

 

this given the estimate 
 

old

est

α

E
c

h / 2

 
 
 
 

 since,

old

α αest
new newα

E
ε ch h

h /2

 
   

  

  

and so 

1

α

new old

est

ε/2
h h ,

E

 
  
 

 

where hold refers to 

the old value of the step size. Similar the 

variable step size (12) may be obtained for 

methods (5), (8), (9) and (11). 

 

6- Numerical Examples 

In this section, two examples will be 

presented for comparison purpose between the 

different proposed numerical methods. 

 

Example 1: 

Our first example deal with the 

homogeneous linear (FDE,s) 
α

*D y(t) y(t), y(0) 1, t >0, 0 < α 1     ....... (13) 

the exact solution of equation (13) is given by 
α

αy(t) E ( t )   

where αE  is the Mittag-Leffler function 

defend by: 

 
 

k

α

k=0

z
E z

Γ ak+1



  

while upon using the Variable Step Size 

Method in connection with the methods, 

explicit fractional Euler’s, the implicit 

fractional Euler’s, the implicit fractional 

Trapezoidal and the explicit fractional 

trapezoidal which are presented in Table (1) 

and Table (2). 

 

Table (1) 

Numerical values for Example 1 when α   0.5 and h  0.01. 

t 
Exact 

Solution 

Absolute Errors 

explicit fractional 

Euler’s 

Absolute Errors 

implicit fractional 

Euler’s 

Absolute Errors 

implicit fractional 

Trapezoidal 

Absolute Errors 

explicit fractional 

Trapezoidal 

0 1.000000 0.000000 0.000000 0.000000 0.000000 

0.1 0.723578 0.167213 0.155995 0.130745 0.137244 

0.2 0.643788 0.147135 0.134112 0.117126 0.119564 

0.3 0.592018 0.102264 0.100434 0.091129 0.092389 

0.4 0.553606 0.089545 0.082064 0.074409 0.077334 

0.5 0.523157 0. 079655 0.070409 0.064279 0.656235 

0.6 0.498025 0.067576 0.063498 0.051468 0.052886 

0.7 0.476703 0.047554 0.046608 0.033885 0.032418 

0.8 0.458246 0.031198 0.027358 0.013057 0.018186 

0.9 0.442021 0.020405 0.016427 0.008685 0.009423 

1.0 0.427584 0.016023 0.010825 0.001385 0.005612 





Fadhel S. Fadhel 

146 

Table (2) 

Numerical values for Example (1) when α   0.5 with h  0.1 andε   0.5. 

t 
Exact 

Solution 

Absolute Errors 

explicit fractional 

Euler’s 

Absolute Errors 

implicit fractional 

Euler’s 

Absolute Errors 

implicit fractional 

Trapezoidal 

Absolute Errors 

explicit fractional 

Trapezoidal 

0 1.000000 0.000000 0.000000 0.000000 0.000000 

0.1 0.723578 0.038724 0.033786 0.029024 0.029987 

0.2 0.643788 0.025795 0.021898 0.019893 0.019979 

0.3 0.592018 0.013606 0.012463 0.009667 0.009857 

0.4 0.553606 0.010369 0.00969 0.007996 0.008215 

0.5 0.523157 0.009424 0.008609 0.006298 0.006758 

0.6 0.498025 0.008798 0.008184 0.005876 0.005956 

0.7 0.476703 0.007209 0.006546 0.005054 0.005286 

0.8 0.458246 0.00678 0.005323 0.004984 0.005054 

0.9 0.442021 0.00596 0.005046 0.003243 0.003554 

1.0 0.427584 0.00408 0.003928 0.002847 0.002998 

 

Example 2: 

Consider the nonlinear equation: 

2

* 2

2
D y(t) y (t) , y(0) 2

(t 1)

    


 .......... (14) 

where 0 <   1.  

The exact solution of equation (14) in case 

of   1 is given by: 

2
y(t)=

(t+1)
  

While upon using the Variable Step Size 

Method in connection with the methods the 

explicit fractional Euler’s, the implicit 

fractional Euler’s, the implicit fractional 

Trapezoidal and the explicit fractional 

Trapezoidal which are presented in Table (3) 

and Table (4). 

 

Table (3) 

Numerical values for Example (2) when α   0.5 and h  0.01. 

t 
Exact 

Solution 

Absolute Errors 

explicit fractional 

Euler’s 

Absolute Errors 

implicit fractional 

Euler’s 

Absolute Errors 

implicit fractional 

Trapezoidal 

Absolute Errors 

explicit fractional 

Trapezoidal 

0 0.000000 0.000000 0.000000 0.000000 0.000000 

0.1 0.090000 0.112765 0.105022 0.091132 0.09314 

0.2 0.160000 0.110098 0.100212 0.090122 0.092176 

0.3 0.210000 0.102565 0.100115 0.087662 0.088565 

0.4 0.240000 0.095425 0.092214 0.072029 0.073245 

0.5 0.250000 0. 096522 0.090423 0.070279 0.071001 

0.6 0.240000 0.095769 0.088363 0.061433 0.062234 

0.7 0.210000 0.08654 0.080811 0.058542 0.059461 

0.8 0.160000 0.08023 0.076352 0.043644 0.044766 

0.9 0.090000 0.07470 0.067672 0.033256 0.034121 

1.0 0.000000 0.05022 0.04812 0.012520 0.013224 
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Table (4) 

Numerical values for Example (1) when    0.5 with h  0.1 and   0.5. 

t 
Exact 

Solution 

Absolute Errors 

explicit fractional 

Euler’s 

Absolute Errors 

implicit fractional 

Euler’s 

Absolute Errors 

implicit fractional 

Trapezoidal 

Absolute Errors 

explicit fractional 

Trapezoidal 

0 0.000000 0.000000 0.000000 0.000000 0.000000 

0.1 -0.090000 0.030651 0.029077 0.011022 0.012873 

0.2 -0.160000 0.023218 0.022120 0.010542 0.011644 

0.3 -0.210000 0.011678 0.010981 0.008732 0.008843 

0.4 -0.240000 0.010505 0.009643 0.007632 0.077454 

0.5 -0.250000 0. 009843 0.009122 0.007071 0.007112 

0.6 -0.240000 0.009277 0.008921 0.006621 0.006822 

0.7 -0.210000 0.008905 0.008010 0.006011 0.06243 

0.8 -0.160000 0.008021 0.007263 0.005121 0.005322 

0.9 -0.090000 0.007704 0.006971 0.004290 0.044322 

1.0 0.000000 0.006023 0.005511 0.003522 0.003722 

 

7. Conclusions 

The fundamental objective of this work has 

been to construct a numerical scheme to the 

numerical solution of the linear and nonlinear 

FDE’s. Those objective has been obtained by 

using the submitted Modified Fractional 

Euler’s method. From the results or the Table 

(1) to (4) we can see the accuracy of the 

optioned used approaches and there are step 

size methods, in which the efficiency of the 

results is increased, and more precisely. The 

Variable Step Size Method approximate 

solution in this case is in high agreement with 

the exact solution.  
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