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Abstract 
This paper is concerned with the proof of the existence and uniqueness theorem for the solution 

of the state vector of a couple linear elliptic partial differential equations using the Galerkin method, 

where the continuous classical boundary control vector is given. Also, the existence theorem of a 

continuous classical boundary optimal control vector governed by the couple of linear elliptic 

partial differential equation is proved. The existence and the uniqueness solution of the couple of 

adjoint equations associated with the considered couple of the state equations studied. The 

derivation of the Fréchet derivative of the Hamiltonian is developed. The necessary conditions 

theorem of optimality of this problem is proved.  [DOI: 10.22401/ANJS.00.1.18] 
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1. Introduction 
The optimal control problems play an 

important role in many fields of real life 

problems, for examples in robotics [Braun & 

Vijayakumar 2013], in an electric power 

[Wang & Lin 2013], in civil engineering 

[Amini & Afshar 2008], in Aeronautics and 

Astronautics [Lessard & Lall 2012], in 

medicine [Liddo 2016], in economic 

[Derakhshan 2015], in heat conduction 

[Yilmaz & Mahariq 2016], in biology [Chalak 

2014] and many others fields. 

The importance of optimal control 

problems encouraged many researchers 

interested to study the optimal control 

problems for systems which are governed 

either by nonlinear ordinary differential 

equations as in [Warga 1972] and [Orpel 

2009] or by linear partial differential equations 

as in [Lions 1972] or are governed by 

nonlinear partial differential equations either 

of a hyperbolic type as in [Al-Hawasy 2008] 

or of a parabolic type as in [Chryssoverghi & 

Al-Hawasy 2010] or by an elliptic type as in 

[Bors & Walczak 2005], or optimal control 

problem are governed by a couple of linear 

partial differential equations of a hyperbolic 

type as in [Al-Hawasy 2016] or of a parabolic 

type as in [Kadhem 2015] or by an elliptic 

type as in [Al-Rawdhanee 2015], or of an 

elliptic type but involve a boundary control as 

in [Vexler 2007]. While the optimal control 

problem which is considered in this work is 

optimal boundary (Neumann boundary) 

control problem governed by a couple of linear 

partial differential equations of elliptic type. 

The control is represented here, by a control 

vector while the state is represented state. 

In this paper, the existence theorem of a 

uniqueness state vector solution of a couple 

linear elliptic partial differential equations 

where the continuous classical boundary 

control vector is given is proved at first using 

the Galerkin method. Second the existence 

theorem of a continuous classical boundary 

optimal control vector governed by the couple 

of linear partial differential equation of elliptic 

type is proved. The existence theorem of a 

uniqueness solution of the couple of adjoint 

vector equations associated with the couple of 

state equations is studied. The derivation of the 

Fréchet derivative of the Hamiltonian is 

developed. Finally the theorem of necessary 

conditions for optimality of the considered 

problem is proved.  
 

2. Description of the Problem 

Let      be an open and bounded 

domain with Lipschitz boundary     . 

Consider the continuous classical optimal 

boundary control consisting of a couple linear 

elliptic state equation with Neumann boundary 

conditions. 

       ( )    ( )     ( ), in Ω .... (1) 

       ( )    ( )     ( ), in Ω ... (2) 

∑    
   

  
   

 
     , on Г  ............................. (3) 
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∑    
   

  

 
        , on Г  ............................. (4) 

with  

      ∑
 

   

 
     (   ( )

   

   
),  

       ∑
 

   

 
     (   ( )

   

   
)  

where   ( )   ( )  ( )    ( )    ( )  

  ( ), and (     )  (  ( )   ( ))  
(  ( ))  is the classical boundary control 

vector, (     )  (  ( )   ( ))  (  ( ))  
is the state vector, corresponding to the control 

vector, and (     )  (  ( )   ( ))  
(  ( ))  is a vector of a given function, for all 

   . 

The set of admissible control  ⃗⃗⃗  (  ( ))  is 

 ⃗⃗⃗  *(     )  (  ( ))  (     )     

    ⃗⃗     a. e. in Г}  .............................. (5) 

where    and    are convex sets.  

The cost functional is 

   
 ⃗⃗ 

  ( ⃗ )  
 

 
‖      ‖

  ( )
  

 
 

 
‖      ‖

  ( )
   

 

 
‖  ‖  ( )

  
 

 
‖  ‖  ( )

   

 ............. (6) 

The continuous classical optimal 

boundary control problem is, minimize the 

cost functional (6), subject to the condition 

 ⃗  (     )   ⃗⃗⃗ . 

Let  ⃗        ( )    ( ).We 

denote (   ) ((   ) ) and ‖ ‖  ( )(‖ ‖  ( )) 

as the inner product and the norm in 

  ( )(  ( )), by (   ), ‖ ‖  ( ) the inner 

product and the norm in   ( ), by (     )  
∑ (     )

 
    and ‖  ‖(  ( ))  ∑ ‖  ‖  ( )

 
    

the inner product and the norm in   ( )  
  ( ), by (     )  ∑ (     )

 
    and 

‖  ‖(  ( ))  ∑ ‖  ‖  ( )
 
    the inner product 

and the norm in  ⃗  and  ⃗   is the dual of  ⃗ . 
 

3. Weak Formulation of the State Equations 

The weak form of problem (1-4) are 

obtained by multiplying both sides of (1-2) by 

     and     , respectively, integrating 

both sides and then using the generalized 

Green's theorem (in Hilbert Space) for the 

terms which have the     order derivatives, 

once get: 

  (     )  (       )  (      )  
(     )  (     ) ,        .................... (7)  

  (     )  (       )  (      )  
(     )  (     ) ,        ................... (8) 

Adding (7) and (8), to get: 

 (     )   (  ),      ⃗   ............................. (9)  

where  (     )    (     )  (       )  
(      )    (     )  (       )  
(      )   ................................................. (10a) 

with: 

  (     )  ∑    
   

   
 
   

   

 
       

  (     )  ∑    
   

   
 
   

   

 
     ,  

  (     )    ‖  ‖  ( )
  where     ,        

   (     )    ̅‖  ‖  ( )‖  ‖  ( )  

where   ̅   ,        and 

 (  )  (     )  (     )  (     )  
(     )   .................................................. (10b) 

The following assumptions are useful for 

many employments in this work. 

 

Assumptions (A): 

a -  (     ) is coercive, i.e.,  (     )  

 ‖  ‖
(  ( ))

 
 . 

b -  (     )    ‖  ‖(  ( )) ‖  ‖(  ( )) , where 

        

c -   (  )    ‖  ‖(  ( )) ,      ⃗      . 

To find the solution of problem (9), the 

Galerkin's method is used by choosing an 

approximation subspace  ⃗    ⃗  ( ⃗   be the set 

of continuous and piecewise affine function in 

Ω), hence problem (9) will be reduced to the 

approximation problem. 

 (      )   (  ),          ⃗    ................... (11) 
 

Theorem 3.1:  

For any fixed (given) control  ⃗  
(  ( )) , problem (9) has a unique 

approximation solution      ⃗  . 

Proof: Let * ⃗    ⃗      ⃗  + be a basis of  ⃗  , 

then the approximation solution is: 

    ∑    ⃗  (     )
 
    .............................. (12) 

where  ⃗   ((   )   (   )  ),      , 

     (   ) and        is a unknown 

constant,           , with     . 

By substituting (12) in (11), with     ⃗  , to 

get: 

∑    ( ⃗    ⃗  )
 
     ( ⃗  ),            (13) 

which is equivalent to the following linear 

algebraic system. 

               ..................................... (14) 
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Easily one can get that through using 

assumption (A-a), problem (14) has a unique 

solution which gives the existence of a unique 

solution of (11). 

 

Remark 3.1, [6]:  

For each     ⃗ , there exists a sequence 

* ⃗  + with  ⃗    ⃗  ,    such that  ⃗      

strongly in  ⃗ . 
Now, from this remark and the weak form 

(11), we get that there exists a sequence of 

weak forms 

 (     ⃗  )   ( ⃗  )       ⃗    ⃗  ,     ...... (15) 

which has a sequence of solutions *   +   
 . 

 

Theorem 3.2:  

The sequence of solutions *   +   
  

converges strongly to   . 

Proof:  

Since     is a solution of (15), then from 

assumptions (A- a & c) we get 

‖   ‖(  ( ))    , where     ,    

By Alaoglu theorem, there exists a 

subsequence of *   + say a gain *   + such that 

       weakly in  ⃗ . To prove, that the 

sequence of solution *   +   
  of problem (15) 

converges to the solution of problem (9). 

First, from the above steps and since  ⃗      

strongly in  ⃗ , yields  

  (     ⃗  )   (     )    (     ⃗     )  
  (         )   
   ‖   ‖(  ( )) ‖ ⃗     ‖(  ( ))  

‖      ‖(  ( )) ‖  ‖(  ( ))     

Hence: 

 (     ⃗  )   (     ) ................................. (16) 

On the other hand, from remark 3.1, 

 ⃗      weakly in  ⃗ , which gives  ( ⃗  )  

 (  ). To prove        strongly in  ⃗ , we 

have for fixed     ⃗  

  ⃗ ( ⃗⃗ )   ( ⃗⃗    ) is linear w.r.t.  ⃗⃗⃗   .......... (17) 

By using assumption (A-a) and that     is a 

solution of weak form (15), it follows that: 

 ‖      ‖
(  ( ))

 
   (             )  

 (         )   (      )   (       )  
 (         )     ⃗ (      )     

Which gives *   + converges strongly to    with 

respect to ‖ ‖(  ( )) . The uniqueness is 

obtained easily through using assumption  

(A-a) also. 

4. Existence of Optimal Control 
In this section, the following lemmas will 

be useful later in the proof of the existence of 

optimal control theorem. 

 

Lemma 4.1:  

The operator  ⃗     ⃗⃗  from  ⃗⃗⃗  to (  ( ))  
is Lipschitz continuous, i.e., 

‖  ⃗⃗⃗⃗  ⃗‖
(  ( )) 

   ‖  ⃗⃗⃗⃗  ⃗‖
(  ( )) 

, with     . 

Proof:  

Let  ⃗   ⃗    ⃗⃗⃗  be two controls vectors of 

the weak form (9),        be the corresponding 

state solutions vectors of these controls. 

Subtracting the above two obtained weak 

forms from (9), then setting   ⃗⃗⃗⃗  ⃗         and 

  ⃗⃗⃗⃗  ⃗   ⃗    ⃗ , with      ⃗⃗⃗⃗  ⃗, to get 

 (  ⃗⃗⃗⃗  ⃗   ⃗⃗⃗⃗  ⃗)  (       )  (       )   

 ........... (18) 

After taking the absolute value of its both 

sides, using assumption (A-a), the Cauchy- 

Schwarz inequality and finally using the trace 

operator to get 

 ‖  ⃗⃗⃗⃗  ⃗‖
(  ( )) 

 
 | (  ⃗⃗⃗⃗  ⃗   ⃗⃗⃗⃗  ⃗)|  

  ‖  ⃗⃗⃗⃗  ⃗‖
(  ( )) 

‖  ⃗⃗⃗⃗  ⃗‖
(  ( )) 

,  

then 

‖  ⃗⃗⃗⃗  ⃗‖
(  ( )) 

   ‖  ⃗⃗⃗⃗  ⃗‖
(  ( )) 

 where    
  

 
 

which gives 

‖  ⃗⃗⃗⃗  ⃗‖
(  ( )) 

   ‖  ⃗⃗⃗⃗  ⃗‖
(  ( )) 

 where         

 .................. (19) 

Hence the operator  ⃗     ⃗⃗  is Lipschitz 

continuous on (  ( )) . 
 

Lemma 4.2[3]:  

The norm ‖ ‖  ( )(‖ ‖  ( )) is weakly 

lower semicontinuous. 

 

Lemma 4.3:  
The cost function (6) is weakly lower 

semicontinuous. 

Proof:  

From lemma 4.2, the norm ‖ ‖  ( ) is 

weakly lower semicontinuous, on the other 

hand when  ⃗    ⃗  weakly in (  ( )) , then 

by lemma 4.1           ⃗⃗  weakly in 

(  ( )) , which gives again from lemma 4.2, 

that ‖      ‖
(  ( )) 
  is weakly lower 

semicontinuous, i.e.,   ( ⃗ ) is weakly lower 

semicontinuous. 
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Lemma 4.4 [3]:  

The norm ‖ ‖  ( )(‖ ‖  ( )) is strictly 

convex  
 

Remark 4.1:  

Using lemma 4.4, the cost function   ( ⃗ ) 

is strictly convex. 

 

Theorem 4.1:  

Assume   ,         is convex. If the cost 

function (6) is coercive, then there exists a 

continuous classical boundary optimal control 

for the problem (6). 

Proof:  

Since   ,        is convex, then 

   (      ) is convex and then  ⃗⃗⃗  is 

convex. Since   ( ⃗ )   , and   ( ⃗ ) is 

coercive then there exists a minimization 

sequence * ⃗  +   ⃗⃗⃗ ,   , such that: 

   
   

  ( ⃗  )     
 ⃗⃗   ⃗⃗⃗ 

  ( ⃗⃗ ) 

Therefore: 

‖ ⃗  ‖(  ( ))   ,        ........................ (20) 

Then by Alaoglu theorem, there exists a 

subsequence of * ⃗  + say a gain * ⃗  + such that 

 ⃗    ⃗  weakly in (  ( ))
 
. By theorem 3.1, 

*   + be a sequence of solutions of a sequence 

of problems like (9). To prove *   +,   , is 

bounded in  ⃗ , once can used assumptions (A- 

a & c), Cauchy-Schwarz inequality and the 

trace operator, to get: 

 ‖   ‖
(  ( )) 
   (       )    (   )   

 ‖  ‖  ( )‖   ‖  ( )  ‖   ‖  ( )‖   ‖  ( )  

‖  ‖  ( )‖   ‖  ( )  ‖   ‖  ( )‖   ‖  ( ) 

   ‖   ‖  ( )    ‖   ‖  ( )    ‖   ‖  ( )

   ‖   ‖  ( ) 

  ‖ ⃗  ‖(  ( ))  

where         and         ,       
  , 

Then 

‖   ‖(  ( ))   , where   
 

 
  . 

Then by Alaoglu theorem there exists a 

subsequence of *   + say again *   + such that 

       weakly in  ⃗  sSince for each  ,     

satisfies the weak form (9), then 

 (      )    (  )  (     )  (      )  
(     )  (      )   ............................... (21) 

To show that (21) converges to  

 (     )   (  )  ......................................... (22) 

First, since   ,        weakly in  , i.e., 

       weakly in   ( ). Then by using the 

Cauchy-Schwarz inequality, one gets: 

   (      )  (        )  (       )  
  (      )  

 (        )  (       )    (     )  
(       )   

 (      )    (     )  (       ) 

 (      )   
   ‖      ‖  ( )‖  ‖  ( )

   ‖      ‖  ( )‖  ‖  ( ) 

    ‖      ‖  ( )‖  ‖  ( )  

  ‖      ‖  ( )‖  ‖  ( )    ‖    

  ‖  ( )‖  ‖  ( )  

  ‖      ‖  ( )‖  ‖  ( )     

Second, and on the other hand, since 

 ⃗    ⃗  weakly in (  ( )) , then the right 

hand side of (21) converges to the right hand 

side of (22). Thus equation (21) converges to 

equation (22). 

Since   ( ⃗ ) is weakly lower semicontinuous, 

and  ⃗    ⃗  weakly in (  ( ))
 
, then 

  ( ⃗ )     
   

  ( ⃗  )     
 ⃗⃗⃗   ⃗⃗⃗⃗ 

  ( ⃗⃗ ), which 

gives 

  ( ⃗ )     
 ⃗⃗   ⃗⃗⃗ 

  ( ⃗⃗ )  

i.e.,  ⃗  a continuous classical optimal control. 

The uniqueness of  ⃗  is obtained from remark 

4.1. 

 

5. Necessary Condition for Optimality 
The necessary condition for continuous 

classical optimal control is studied through the 

following theorem. 

 

Theorem 5.1:  
Consider the cost function (6), and the 

adjoint (     )  (    
     

) equations of the 

state equations (1-4) are given by 

       ( )    ( )   (      ), in Ω  

 ........... (23) 

 

       ( )    ( )   (      ), in Ω  

   ......... (24) 
   

  
  , in Г  .............................................. (25) 

   

  
  , in Г  .............................................. (26) 

Then the Fréchet derivative of    is given by  

(  
 ( ⃗ )   ⃗⃗⃗⃗  ⃗)  (    ⃗    ⃗⃗⃗⃗  ⃗). 
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Proof:  

Writing the couple of the adjoint equations 

(23-26) by their weak forms, adding those 

weak forms, then substituting      ⃗⃗⃗⃗  ⃗ in the 

obtained equation to get, the following weak 

form which has a unique solution       ⃗⃗  for a 

given control  ⃗   ⃗⃗⃗  (the proof is similar to 

the proof of theorem 3.1): 

   (      )  (        )  (       )  
  (      )  (        )   

  (       )  (          )  
(          )   ....................................... (27) 

Substituting in (7) once the solution    and 

once again the solution       , subtracting 

the obtained equations one from the other, 

finally substituting      , to get 

(       )  (       )   (      )  
(          )   ....................................... (28) 

Same steps can be used in equation (8) for the 

solutions    and        with      , to 

obtain 

 (       )  (       )   (      )  
(          )   ....................................... (29) 

Adding (28) and (29), then subtracting the 

obtained equation from (27), to get 

(      )  (      )  (          )  
(          )   ....................................... (30) 

Now, for the cost function, we have 

  ( ⃗    ⃗⃗⃗⃗  ⃗)    ( ⃗ )  (          )  
(          )  (      )   (      )  
 

 
‖  ⃗⃗⃗⃗  ⃗‖

(  ( )) 

 
 

 

 
‖  ⃗⃗⃗⃗  ⃗‖

(  ( )) 

 
 .................. (31) 

From (30) & (31), once get  

  ( ⃗    ⃗⃗⃗⃗  ⃗)    ( ⃗ )  (    ⃗    ⃗⃗⃗⃗  ⃗)
 
 

 

 
‖  ⃗⃗⃗⃗  ⃗‖

(  ( )) 

 
 

 

 
‖  ⃗⃗⃗⃗  ⃗‖

(  ( )) 

 
 .................. (32) 

From lemma 4.1, it yield that 
 

 
‖  ⃗⃗⃗⃗  ⃗‖

(  ( )) 

 
 

 

 
‖  ⃗⃗⃗⃗  ⃗‖

(  ( )) 

 
 

 (  ⃗⃗⃗⃗  ⃗)‖  ⃗⃗⃗⃗  ⃗‖
(  ( )) 

 ..................................... (33) 

where  (  ⃗⃗⃗⃗  ⃗)   , and ‖  ⃗⃗⃗⃗  ⃗‖
(  ( )) 

   as 

  ⃗⃗⃗⃗  ⃗    

Then from the Fréchet derivative of   , and 

(32-33), once get: 

(  
 ( ⃗ )   ⃗⃗⃗⃗  ⃗)  (    ⃗    ⃗⃗⃗⃗  ⃗)

 
. 

 

Theorem 5.2:  
The continuous classical optimal boundary 

control of (1-4) is: 

  
 ( ⃗ )      ⃗    with       ⃗⃗  and       ⃗⃗ .  

Proof: 

If  ⃗  an optimal control of problem, then 

  ( ⃗ )     
 ⃗⃗   ⃗⃗⃗ 

   ( ⃗⃗ ),   ⃗⃗  (  ( ))
 
 

i.e.,   
 ( ⃗ )          ⃗   

  ⃗⃗⃗⃗  ⃗   ⃗⃗   ⃗   
Thus necessary condition for optimality is  

(    ⃗   ⃗ )  (    ⃗   ⃗⃗ ),,    ⃗⃗  (  ( )) . 
 

6. Conclusions: 
The Galerkin method is used successfully 

to prove the existence and the uniqueness 

theorem for the solution (continuous state 

vector) of a couple linear elliptic partial 

differential equations when the continuous 

classical boundary control vector is given. The 

existence theorem of a continuous classical 

boundary optimal control vector governing by 

the considered couple of linear partial 

differential equation of elliptic type is proved. 

The existence and the uniqueness solution of 

the couple of adjoint equations associated with 

the considered couple equations of the state is 

studied. The Fréchet derivation of the 

Hamiltonian is developed. The necessary 

conditions theorem of optimality of the 

considered problem is proved. 
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