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Abstract

In this paper the continuous classical boundary optimal control problem of a couple nonlinear
partial differential equations of parabolic type is studied. The Galerkin method is used to prove the
existence and uniqueness theorem of the state vector solution of a couple nonlinear parabolic partial
differential equations for given (fixed) continuous classical boundary control vector. The theorem
of the existence of a continuous classical optimal boundary control vector associated with the
couple of nonlinear parabolic partial differential equations is proved. The existence of a unique
vector solution of the adjoint equations is studied. The Fréchet derivative is derived; Finally The
Kuhn-Tucker-Lagrange multipliers theorems is developed and then is used to prove the necessary
conditions theorem and the sufficient conditions theorem of optimality of a couple of nonlinear

parabolic equations with equality and inequality constraints.
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1. Introduction

The objective of optimal control theory is
to determine the control signals that will cause
a process to satisfy the physical constraints
and at the same time minimize (or maximize)
some performance criterion, [8]. Control
theory is an application-oriented mathematics
that deals with the basic principles underlying
the analysis and design of (control) system.
Systems can be engineering (air conditioner,
air craft, and CD player etc.), economic, and
biological, [12]. In general, there are many
optimal control problems are governed either
by ODEs as Orpel in 2009[11] or by different
types of PDEs and are subject to control and
state constraints, as El-Borari and et al in 2013
[9], and Wang, Y. and et al in 2015 [15],
which are studied an optimal control of
parabolic partial differential equations, Farag,
M. H. in 2014[10] studied classical optimal
control of hyperbolic partial differential
equations, Diaz and et al in 2012 [7] studied a
optimal control of elliptic partial differential
equations, Al-Rawdanee, E. in 2014 [3]
studied an a classical optimal control of a
coupled of nonlinear elliptic partial differential
equations and M. K. Ghufran in 2016 [4]
studied a classical optimal control of a coupled
of nonlinear parabolic partial differential
equations while, Al-Hawasy, J. in 2016 [2]
studied a classical optimal control of a coupled
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of nonlinear hyperbolic
equations.

This paper deals with, the proof of the
existence and uniqueness theorem of the state
vector solution of a couple nonlinear parabolic
partial differential equations where the
continuous classical boundary control vector is
given, the existence theorem of a continuous
classical boundary optimal control vector
associated with a couple nonlinear partial
differential equations of parabolic type is
proved, also the derivation of the Fréchet
derivative is done, the study of the existence
and uniqueness of the vector solution of the
adjoint equations which corresponds to the
state vector. Finally, the Kuhn-Tucker-
Lagrange multipliers theorem is developed and
is used to prove the necessary conditions
theorem and the sufficient conditions theorem
of optimality of a couple of nonlinear
parabolic equations with equality and
inequality constraints.

partial differential

2. Description of the Problem

Let I = (0,T), T < o, Q c R? be an open
and bounded region with Lipschitz boundary
'=0Q, Q=Qx1, £=T x1. Consider the
following continuous boundary optimal
control problem:

The state equation is given by the
following nonlinear parabolic equation:
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Vit — 1] 16 (al](x t) yl) + bl(x t)yl
b(x, t)yz = fl(x t,y1),in Q ..................... 1)
Yot — z] 16 (bij(x,t) yz) + by (x, t)y, +
b(x,t)y; = fz(x t,y,), in Q .................... (2)
Yij= 1au% =u (X, t),0NZ i (3)
y1(%,0) = y2(x), 0N Q oo, 4)
Mo by 22 = Uy (4,6), 0N % o (5)
y,(x,0) = y2(x), 0N Q ovevvieee, (6)
where for all x=(x,%x), uY2) €
(Hl(Q))2 is the state wvector, (uq,u,) €

(LZ(Z))2 is the classical boundary control

vector, (fy, f,) € (L? (Q))2 is a vector of a

given function defined (Q X R) X (Q X R),

and aij(x, t), bij(x, t), b(x, t) and bi(x, t) €

C*(Q).

W,=

{We L@ x L2(®)|w € Ua.eink 6, (W) = 0,6,(W) <0}

U c R2.

The cost function is

Go(ﬁ) =

fQ[gm(X' t,y1) +

9o2(x, t, yp)ldxdt + [[hoy (x,t,u;) + hop (%, t,up)]da

(7)
The constraints on the state and the control

vectors are

G, (1) = fQ[gn(x’ t,y1) + gi2(x,t, y2)]dxdt +

Jolhia G, t,us) + hyp(x,t,up)]ldo = 0

(8)
G,(0) = fQ[921(x» t,y1) + ga2(x, t,y2)]dxdt +
Jslha1 G t,ug) + happ (x, t,up)]do < 0

9)
where (y1,¥,) = (Yu,, Yu,) is the solution of
(1-6) corresponding to the boundary control
vector(uy, u,).

LetV =V xV = {ﬁ; be (Hl(ﬂ))z}, B = (v, vy).

We denote by (v, v)qand ||v]|, (by (v, v)r
and ||v||r) the inner product and the norm in
L2(Q) (in L2(T)), by (v,v), and ||v||; the inner
product and the norm in H1(Q), by (¥,7)q
and |||l (by (¥,7)r and ||¥||r) the inner
product and the norm in L?(Q) x L>(Q)( in
@) xL2T) by (@) =y,v) +
(v, v2)1 and 9]} = llvollf + v, llf  the
inner product and the norm in Vand V*is the
dual of V.

124

Jamil A. Ali Al-Hawasy

3. Weak Formulation of the State Equations
The weak forms of the problem (1-6) when

y € (H3(Q))? are given almost everywhere on

I (Vvy, v, €V, 9.0, 0),y2(.,t) €V) by

(Y16, v1) + a1 (&, ¥4, v1) + (b1 (Y1, v1)q —

(b®)y2v1)a = (f,v)a + (U, v)r,

(Yf' v1)a = (71(0),v)q
and

(V26 2) + az(8,y2,2) + (b2(£)y2,v2)q +
(b(®)y1,v2)0 = (f2,v2)0 + (U2, V)1,

3, v)a = (72(0),v3)q PR
Where a,(t,y;,v;) —f Zl} 14ij ai]cl aZjd

0y, 0v
ay(t,y,, vy) = f Zl} 1Dij ax2 6xjd

To study the existence of unique solution of
the weak form (10-11), we consider the
following assumption.

Assumptions (A):

(i) f; is of a Carathéodory type on Q X R,
satisfies the following sub linearity
condition for y,ie. |fi(xty)]| <
ni(x, t) + ¢;lyil

Where (x,t) €Q, y; €R, ¢; >0 and
n; € I*(Q,R), Vi = 1,2

(ii) f; is Lipschitz w.r.t. y;, i.e. |fi(x, t,y;) —
fiCa t, 91 < Lily; — il

(iii)Where (x,t) € Q, y;,y; € R and L; > 0,
Vi=1,2

(iV)c(t,y,y) =
a1(t, y1,y1) + (b1()y1, ¥1)a +

az(t'%}Z;yZ) + (b%z(t)}iz'}’z)n’% ) and
lct, ¥, M| < allyll I¥lly,c(ty,y) =
a||lyll?, where a,a are real positive

constants

Proposition (3.1), [6]:

Let f: Q x R™ - R™ is of a Carathéodory
type, let F be a functional, such that
F(y) = [, f(x,y(x))dx,
where Q is measurable subset of R¢(d = 2,3),
and suppose that
If e, I < CC0) +n)llyllY, v(x, y) € Q x
R™, y € LP(Q x R™)
Where {(x) € L(Q x R), n € LF-a(Q X R),
and a € [0,p], if pe[1,0), and n =0, if
p = oo. Then F is continuous onLP (Q X R™).
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Proposition (3.2), [6]:

Let f&f,: Q X R" - R™ are Carathéodory
type, let F:LP(Q) —» R be a functional, such
that, F(y) = [, f,(x,y(x))dx where Q is a
measurable subset of R4, and

B
I < @) +n@lylle,  Vxy) €
QO x R",
Where ¢ € L1(Q X R), %+$= 1, ne
LPF(Q x R), B € [0,p] if p # o0, and 7 = 0,
ifp=o0

Then the Fréchet derivative of F exists for
each y € LP(Q x R™) and is given by:
GO = [, f, (%, y(x))h(x)dx.

Theorem (3.1), [14]:

Let D be a measurable subset of R<,
@:D - Rand @ € L}(D,R).

If the following inequality is satisfied
[;@(W)dv=0 (or <0,=0), for each
measurable set S < D, then
@(v) =0(r<0,=0),ae.inD.

Theorem (3.2) (Existence and Uniqueness of
Solution of the State Equations):

With assumptions (A), for each fixed
boundary control % € (L,(X))?, the weak form
of the state equations (10-11) has a unique

solutiony = (y4,¥2), s.t.
y € (12(,V)) andy, = e, y2e) €
(12, v))°
Proof:

Let l_/,’1 c V be the set of continuous and
piecewise affine functions in Q, let

(D1, By, ..., B} be basis of V, where n = 2N
(where N is the dimension of each V), then the
approximate solution y of (10-11) s
approximated by 3V, = (y1n,¥2n), Such that,
foreach n
In = Lj=1 G (O7;(x)
where
1_7)1 = ((2 — ‘E)Ulk, (’B — 1)172k), and C] = Cij
For j=k+n(f—-1), k=1,..N,£=1.2,
and ¢;;(t)is unknown function of t.

The weak forms of the state equations (10)
and (11) can be approximated w.r.t. the space
variable, using the Galerkin’s method to get,
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Vine 1) + a1 (6, Y1, v1) +
(b1 () y1n,v1)a — (b(®)y2n, v1)q =

(fi1n), v1)a + (U, V1)E e (13a)
Vi va = O, v Vv €V e, (13b)
and

(Vane V2) + a2 (t, Yon, v2) +

(b2 (O)Y2n,v2)a + (b(E)Y1n, V2D =

(F2(020), V2)a + (U, V2)T oreereineieeieene, (14a)
e v2)a = (V3,12 e, (14b)

where y2 = y,(x,0) €V, cV c L2(Q) is
the projection of y; for the norm ||. ||,,i.e.
(yguvi)ﬂ = (yio’vi)g v %] € Vn < ”yion -

yilly < v’ =villy vvi € Govi = 1,2

By substituting (12) in (13 a& b) and in
(14 a & b), one obtains

AlCi(t) + D, C,(8) — E1GR(0) =

bl (Vf(x)cl(t)) ..................................... (12,3)
A1C1(0) = BY e, (12°b)
Azcé(t) + D, (8) + Eo G (t) =

| ZE €107 I (137a)
BCy(0) = b oo (13'b)
where:

Ay = (aij)nx,l’ aij = (vlj’vli)Q,
D, = (dij)nxn’ dij = [as (&, vij,v0:) +
(b1 (D)4}, 171i)9]1 E; = (eij)nxn’ e =
(6@ ;1) g o) = (c65®)

nx

Co) = (cy®) . C(0) = (ey(@)

nx nx

by = (bidnx1, bei = (fo(7; Co(0)), veida +
(e Vet Vo = (Vp)nxs b)) = (b{(’)i)' by =
(8, vei)y and Az = (byj) bij =
(v2),vai) g D2 = (fig),,, fis =
[a,(t,v2),v21) + (b2(D)Vy), v20)al, Ez =
(hij)nxn1 hij = (b(t)vy1;,v2i)q, £ = 1,2.
From assumptions (A), easily once can get
that the matrices A, &A, are positive definite,
therefore the system (12°-13") of 15t order
differential equation has unique solution [5].
Now, to show the norm ||2||, is bounded:
Since y° € (L2(Q))?, then there exists {#0},
with 32 € V, such that 39 — ¥° strongly in
(L2(Q))? and then from the projection theorem
and (13b & 14b) one obtains that 32 — §°
Strongly in (L2(Q))? with [|y2]lo < b;.
The norm |I>7n(t)||Loo(,,Lz(m) and ||y, ()1l are
bounded:



Setting v, = y;, in (13a) and v, = y,, In
(14a), integrating both sides of each obtaining
equation for t from 0 to T, and adding them
finally with Assumption (A-iii), one has

T, - T 5>
Jo Gnes uddt + [ c(t, Y, )dt =

T T
Jo Frnn) yandadt + [ (f2(V2n), Yandadt +

T T
Jo i, yindrdt + [ (w2, y2n)rat,
Since  Yn € (L2(1,V*))? = (L2(1,V))?* and
Y € (L2(1,V))? in the 15t term of the L.H.S.
of (15), hence for this term we can use Lemma
1.2 in [13] and since the 2™ term is positive,
taking T =t € [0,T], finally using, and
Assumption (A-i) for the 15¢ two terms in the
right hand side (for briefly will use R.H.S.
from here and next) of (15), one has
[ L1501 dt < lIngl3 + l1m2113 +

ty=
lull2 + llugllE+cs [ 157113 dt,
= 15 (ON5 = 1¥u(OII§ < my +mg + ¢, +
c2 + Cs [ |17 113 dt
= 172 (O3 < m* + cs 17113 dt
By using the Belman- Gronwall inequality,

one gets

= ||37n(t)||Loo(,,Lz(m) < hg
hence
152 (O3 = [ 17 l13de

< T maXefo,rll¥n (t) I

<Thg = h%o = hyo
The norm ||, ()12 ;) is bounded:
Again by using Lemma 1.2 in [13] for the 15¢
term in the L.H.S. of (15), then using same
results which are obtained from the R.H.S,,
finally setting t=T, and ||3,(T)II3 =0,
equation (15) becomes
1F2(DII3 + 2 [ 17113de < [In4113 +
21l + Nl + lluzllg + csliFllf +
17, (O 15
= ||5;n”1,2(1,v) < hiy

The convergence of the solution:

Let {17;}::1 be a sequence of subspaces of
V, such that V& = (vy, v,) € V, there exists a
sequence {#,} with B, = (V1 Von) € V,, V0,
and #, > ¥ strongly in V=19, >
strongly in (12())".
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— —

Since for each, with 1, €V, problems
(13a&b) and (14a&b) have a unique solutions
Yin, Van respectively, hence corresponding to

the sequence subspaces {17;1}:;1 one obtain a

sequence of approximation problems (13
a&b) and (14 a&b), by substituting v = 7,

(Wi Ven) for m=12,.., in these
approximation problem, one gets

(Vint» V1n) + @1 (6, Yins Vin) +
(bl(t)yln’vln)ﬂ - (b(t)yanvln)Q =
(f1(V1n) V1n)a + (Uy, V1)1, VY1n Yon €
L2(LV,)aeinT e (16a)

(yfn' vln)ﬂ = (y{)' vln)ﬂlv Vin € Vru vn

.............................. (16b)
and
(Vont» Van) +
ay(t, Yan, Van) + (b2()Y2n, Van)a +
(b(t)yanVZn)ﬂ =
(f2(¥2n), Van)a + (U2, V2p)rs VY1 Yon €
L2, V) @8N T o, (17a)

(ygn' Vonda = (yg' Von)a,VVan € Vy, V0
............................. (17b)

which has a sequence of solutions {y,}m,
where nmy, = (Y15, V2n). Since the norms
IYnll 2y @and [I¥nll 2y, are bounded, then
by Alaoglu’s theorem, there exists a
subsequence of {y,}nen, SAY again {y,}nen
such that 3, — ¥ weakly in (L (Q))2 and in

(22, M)’

Then through the First Compactness
Theorem, Assumption (A-i), and the bounded
norms results, once get y, — ¥ strongly in
*@)".

Now, consider the weak state equations
(16a&b), (17a&b) and take any arbitrary,
vy, U, € V then there exists a sequence {vy,},
{v,,} respectively, v;, €V, ¥vn, such that
vin — v; strongly in V (which gives v;,, — v;
strongly in L2(Q)), Vi = 1,2.

Multiplying both sides of (16a) and (17a)
by ¢;(t) € C1[0,T] respectively, with
¢;(T) =0,Vi = 1,2, integrating with respect
to t from 0 to T, and then integrating by parts
the 15¢ term in the L.H.S. of each obtained
equation, one gets that
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- fOT(Y1n: V1n)<Pi(t)dt +
foT[ al(tr Vin vln) + (b1(t)y1n, Uln)Q -
(b(tT)YZn» vin)aleq(H)dt =

fo (fi1n)s Vin) @1 (D)dt +

fOT(up V1) @1(®)dt + (Y1, V1n)a®1(0)

................................ (18)

and

— Jy Ozn van) @5 (O)dt +

fOT[az (t, Y2n Van) + (b2()Y2n, Vanda +

(b(ﬁ)%n» Van)al@2 (D)dt =

fO (fz (yZn); 17211)(2(/)2 (t)dt +
fOT(UZ; v)r@2 () dt + (Y3, V2n) 092 (0)
............................... (19)

Since Vi=12, y,—y; weakly in

L2(Q), y5, — y? strongly in L?(Q), and
Vi, — v; strongly in L2 (Q)} R
Vi, — v; strongly in V
{ Ving; — vig;strongly in L*(Q)
Vin®@; — v;@; strongly in L>(1,V)
Then the following convergences hold
fOT(ym» V1)@ (t)dt + fOT[al (&, Y1n, V1n) +
(bl (t)ylnr Uln)ﬂ -
(b(B)Y2m Vin)alp1(H)dt —
[y 1, v0) @1 (Ode + [ [as (6, y1,v1) +
(b;(D)y1,v1)q — (b(D)y2, v1)ale, (B)dt,

(y{)n: Vin)a®1(0) — (¥7, V1)1 (0)
and

fOT(YZn» Vo) @, (t)dt + fOT[az(t' Yan Van) +
(bz (t)yan vZn)Q +

(b(t)y1n Vandalp.(H)dt —

Jy G2, v2)02 (D)t + [ [az(t, y2,v2) +

(b2 (1)y2,v2)q + (b(D)y1, v2)al@. (t)dt

Y3 V2n)a@2(0) — (3, 12) a9, (0) (23)
On the other hand, let w;, = v;,¢; and

w; = v;@; then Vi = 1,2, w;, — w; strongly
in L2(Q) and then w;, is measurable w.r.t.
(x,t), using assumption (A-i), then applying
Proposition (3.2), the integral
fQﬁ-(x, t, Vin)Windxdt is continuous Ww.r.t.

VinWin), but y;, — y;strongly in L*(Q),
then

fOT(fi(Yin)'vin)Q(pi(t)dt —
fOT(ﬁ(Yi);vi)Q(pi(t)dt L Vi=1,2
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From (20-23) and the above converges, (18)
and (19) become

— Jy o v)ei(©)dt + [ [ay (6 yy,v1) +

(b1 (H)y1,v1)a — (b(®)y2,v1)ale,(D)dt =

[ (i), v (D)t +

[ (1, v)r 01 ()dt + (99, v1)001(0)

and

- fOT()’z' V)@, (t)dt + fOT[az (6, y2,v2) +
(b (D)y2,v2)q + (b()y1, v2)a] @, (D)dt =
[y ((r2), )2 (t)dt +

fOT(uz' v)r 92(B)dt + (¥2,v2)092(0),

Now we have following two cases:

Case 1:

Choose ¢@; € D[0,T], ie  ¢;(0)=
@;(T) =0, Vi = 1,2 substituting these values
for @; in (24) and (25), finally using
integration by parts for the 15¢ terms in the
L.H.S. of each one of the obtained equations,
yield
fOT(J’u: V1)@ (D)dt + fOT[a1 (t,y1,v1) +
(1;1@)}’1:171)9 — (b(D)y2, v1)ae.(D)]dt =
fo (fl(yl)lvl)ﬂ(pl(t)dt +
fOT(up v)r @1 (t)dt
and
fg()’zt, Vo), (t)dt + fOT[az(t, Y2, V2) +
(l;z (Dy2,v2)a + (b(®)y1, v2)ap.(D)]dt =
Jo F2(y2), v2) @2 (B)dt +
fOT(uz' V) q @2(t)dt,
i.e., y;&y,are solutions of the state equations
(10a) & (11a) respectively.

Case 2:

Chooseg; € C1[0,T], Vi = 1,2, such that
@i(T) = 0 &p;(0) # 0,

Using integration by parts for the 15¢ term
in the L.H.S. of (26) & (27)and subtracting
two each obtained equations of (24),(25)
respectively one gets

(1, v1)a®1(0) = (¥1(0), v1) a1 (0), =

(y{)' v)a = (71(0),v1)q
i.e., the initial condition (10b) holds. Easily
one can see that the initial condition (11b)
holds.

The strong convergence for ¥, in L*(I1,V):



By substituting v; =y; and v; = y;, In
(10a) and (13a) respectively and also
substituting v, = y, andv, = y,, in (11a) and
(14a) respectively, integrating these four
equations from t =0 tot =T finally adding
the equations which is obtained from (10a)
with that obtained from (13a) to gather and the
same thing happened for (11a), (14a), to get:

fOT()_’)tr :)7) dt +
Jy e 3.3t = [[ (i), y)a +
(f2(y2), ¥2)aldt + fOT(u1»Y1)r + fOT(uz»YZ)F

................................................................... (28a)
and

Sy Fnes I} At + [ c(t, 5, Fo)dlt =

L TG, v1n) + (o), Y2n)1dt +

[} @ yi)rdt + [ (g, Yor)rdt e (28b)

Using Lemma 1.2 in [13] for the 15¢ terms
in the L.H.S. of (28a&b), once get,

HFTHIE = 2FONE + [ c(t,3,7)dt =
[ IAGD. 0 + ((2), y2)a) dt +

T T
Jo i, yrdt + [ (ua, y2)rdt
and

32 (DI = U5, O3 + f c(t, T, F)dt =
L IAGm,ym)a + (fr02n), Yandal dt +

T T
Jo o, yindrdt + [ (uz, y2n)rdt, (29b)
Now, consider the following equality:

NI (T) = (DI — 2115,(0) — y(0)IIF +
T - - - -
Jo ¢t P =, =) dt = Ay — Ay —

where:

(A1) = P (DG = 23, (0I5 +

[T (6,3 (T, $u(T)) dt

(A2)=2(7.(T), (1)) — (5.(0),5(0)) +
[ c(t, 3,(1), 3(D)) dt

and

(A3)=1(F(T), §,(T) = ¥(T)) — 2((0), %, (0) —

y(©) + [ c(t, 5T, 5. (T) — H(T))dt
Since (form the projection theorem, see
prove theorem 3.2)

¥r = 3,(0) — ¥° = (0) strongly in

(5100)) S (31a)
Y. (T) — (T) strongly in (L2 (Q))2 ..... (31b)

Then
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(5(0),5,(0) — $(0)) — 0 &(F(T), ¥, (T) —

P(T)) = 0 oo (31c)
17,(0) = ¥(0) 11§ — 0 &||3,(T) = F(D)II§ — 0
............................. (31d)

and since y,, — y weakly in (L2(I, V))Z, then

[} c(t. 3T, 5,(T) = F(T))dt — 0 ......(31e)
From proposition (3.1), the integral

fOT(ﬁ- (Vin), Yin) dt is continuous w.r.t. y;, then

fOT[(fl(}’m),J’m) + (f2(v2n), Y2n)l dt —

[ [AGDYD) + (22, )1t e (31f)
since y;, — y; strongly in L2(Q), Vi = 1,2.
Now, when n — oo in both sides of (30),
one has the following results:
1. The first two terms in the L.H.S. of (30) are
tending to zero (from 31d)

from

2.E0.(A1) = [I(AGm)ym) +
(29b)

(farzn), y2n)l dt + foT[(ul:}ﬁn)r + (U2, y2n)rldt
from .r

- (i), y1)a + (f2(12), ¥2)al dt
(31f) o

T

T
+ f (u y)rdt + f (g, yp)rdt
0 0

3. Eq.(42) .
—L.H.S.0f(29a) = fo (A1), y1)a +

(f2(y2), y2)al dt + fOT[(ul;yln)F +

(uz, y2n)rldt
4. The three terms in (A45) are tending to zero

from(31c) and c(31e).

From the above steps, (30) gives that:
T - > o -
Jo ¢t Y = 9,9 —)dt — 0
which means that:
&fOTIIfJn —y|l2dt — 0 = y, — ¥ strongly in

(22, M)’

Uniqueness of the solution:

Let y=y,y2), ¥=@19.) be two
solutions of the state equations (10a)-(11a),
i.e. Vv, v, €V, i.e, first from (10a), one has
(Y1, v1) + a1 (&, y1,v1) + (b1 (D)1, v1)q —
(b(®)y2,v1)a = (fi(y1), v1)a + (U, vOr,
(P16, v1) + a1 (&, 91, v1) + (b1 ()P, v1)q —
(b(®)P2,v1)a = (f1(P1), v1)a + (U, vr,

By subtracting the 2"¢ equation from the
15tone, then substitutingv, = y; — 9,, to get
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(= PDeyi =) ta 6,y — P, y1 —

J) + (b1 — Y1)y — V1o —

&) (Y2 —92),v1)a = (i(y1) —

i), y1 = I)a,
Second form (11a), and by the same above

way but for y,,y,, the following equality is

also obtained

(V2 =92)6Y2 = P2) + a(t, ¥, — 92, Y2 —

92) + (b2(D) (V2 — 20,2 — P2)a t+

(b1 — 1), y1 —I1a = (20n) —

f2301),¥2 — ¥2)a. (33)
Adding (32) and (33), applying Lemma 1.2

in [13] for the 15t term of L.H.S of above

equality, using assumption A-iii, yields

- 2112 ERTEN 212
2y -3l +aly -3l < 1o -
1Oy —=I)a + (2002) — 2(2),y2 —

Y2)al (34)
Keep in mind the second term in the

L.H.S. of (34) is positive, integration both
sides of (34) with respect to t from 0 to t, then
using assumptions (A-ii) of the R.H.S, finally
using Belman - Gronwall inequality, one gets

- R 2 = ped
Iy -5@l, =0 vt =[5 =Tllz,, =
0=7=7%.

4. Existence of a classical Boundary
Optimal Control
The following theorem and lemma are
important to study the existence of a classical
boundary optimal control vector.

Theorem (4.1):
(@) In addition to assumptions (A), if y and

y+ E are the states vectors corresponding to

the controls vectors % and i + Auw, if % and Au
are bounded in (L?(X))?, then

||A_:)/)||L°°(I'L2(Q)) S K”E)”z’ ”A_y)”LZ(Q) S
K”E”z and ”A_y)”LZ(Lv) = K”E”z

(b) With assumptions (A), the operator
U — yy from(L2(2))%in to (L*(1,12(Q)))?,
or in to (L2(1,V))? or in to (L?(Q))? is
continuous.

Proof:

(@) Let U= (ug,u,) € (L*(X))? then by
theorem (3.1) there exists ¥ = (y; = w,,, ¥» =
¥yu,) Which satisfies the weak forms (10a&b) -

(11a&b),Vv,, v, € V, also let & = (4, 4,) €
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(I2(£)?, then $=(9,9,) is the
corresponding solution of the following weak
forms

P16 v1) + a1 (&, 91, v1) + (b1 (£)P1, V1) —
(b(£)P2,v1)q = (1(F1),v1)a + (g, v)r

(31(0),v1)q = (Yf' v1)q
and

(D26, v2) + az(t, 92, v2) + (b (D)2, v2)q +
(b(®)P1,v2)a = (f1i(P2), v2)a + (T, v2)r

(32(0),v2)q = (¥3, v2)q (36b)
By subtracting (10a&b) and (11a&b) from

(35a&b), (36a&b) respectively, setting

Ayy =91 = Y1, By, =92 =Y, Duy =1, —

u; and Au, = i, — u, in each one of the two

obtained equations, i.e.

(Ay1e v1) +

a,(t, Ay, vy) + (b1 (D)Ay,, V1) —

(b(®)Ay2, v = (fi(y1 + Ay1),v)a —

(11, v1)a + (AUL VT e, (37a)
(Ay1(0),71)0 =0 e, (37b)
and

Ay, v2) +

ay(t, Ay, v7) + (b2 (0)Ay,, v3)q +
(b(D)Ay1,v2)a = (f2(y2 + Ay2), V2)a
—(f2(r2), v2)a + DUz, V2)r, o, (38a)
(Ay,(0),17)0 =0 e, (38h)
By substituting v, = Ay, in (37a) and

v, = Ay, in (38a), adding the obtained
equations, using Lemma 1.2 in [13] for the 15¢
term and Assumption (A-iii) in the L.H.S. of
the obtained equation, one gets

1d

— 2 — 2

Le|ay|l, + llayll, < 1A Gr + 2y -

i), Ay D) [+ (f(y2 + Ayz) — f2(32), Ay2)l
|(Auy, Ay)| + [(Auy, Ay,)| (39)
Since the 2™ term of L.H.S. of (39) is
positive, integrating both sides w.r.t. t from 0
to t, then using assumptions (A-ii), and then
using the Cauchy-Schwarz inequality for the
R.H.S., finally using the Trace operator, to get

— 2 —2 t—s 12
lay@ll, < 4llaully +Ls fy 8yl e
where L5 refers to a summation for constants
Applying the Belman-Gronwall inequality
gives

I8 @, < kIl ¢  [o,7]

- |5 < |8l ¢ € 0,7)

L°°(I,L2(Q))
From this result, easily once can get that



1851l,2 4, < Kl182 |y, and ([l 2, ,, < K][au],

(b) Let Au =%, —u, and Ay =%, — 9,
where y;and y, are the correspond states to
the boundary controls 1;andu,, then frompart
(a) of this theorem,once get that the operator
U — ¥ is Lipschitz continuous from (L?(X))?
in to( L*(I,L2(Q)))?. The other result is
obtained easily.

Assumptions (B):

Consider g;; and hy; (for each [ =0,1,2
andi =1,2 ) is of Carathéodory type on
(Q X R) and on(Z x R) respectly and satisfies
the following sub quadratic condition w.r.t. y;
and y;
|g£’i(x' t, yl)l <
Yu(xet) + () Thu(x tu)l < 8;(x, t) +
dyi(uy)?
where Vi, Ui € R with Yii € Ll (Q), 6” € Ll (Z)

Lemma (4.2):
With assumptions (B), the functional
G, (1), is continuous on(L?(Z))? for each

[=0,1,2.
Proof:

From assumptions (B), with Using
proposition (3.2), the integrals

fQ gu(x t,y) dxdt and [ hy(x, t,u)do are
continuous on L?(Q) and L?(X) respectively
for eachi=12, [=012= G is
continuous on (L%(X))?, vl = 0,1,2.

Theorem (4.3):
In addition to assumptions (A), and (B), If

the set of controls is of the form W = W; with

U is convex and compact,W, # @, if for each
i =12, G;(u ) is independent of u;, G,(u)
andG,(u) are convex w.rt. u; for fixed
(x,t,y;) for each i = 1,2. Then there exists a
boundary optimal control vector.

Proof:

Since the set W; is convex, closed and
bounded for each i = 1,2, then W; X W, is
convex, closed and bounded, which gives
W, x W, is weakly compact. Since W, # @,
then there exists i € WA and there exists a
minimum sequence {u,} with %, € W,, Vk

such that, limy e, Go (i) = infz, Go().
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But W is weakly compact, there exists a
subsequence of {u,} say again {u,} which
converges weakly to some point 7 in W, i.e.
U, — u weakly in (L2(2))?%, and ||ugllz < ¢,
vk .

From theorem (3.2) for each boundary control
Uy, the state equation has a unique solution
Vi =Yu, and the norms [[¥lle 12y,
1Ykl 12y @nd 1Yk |l 21 1y are bounded, then by
Alaoglu’s theorem there exists a subsequence
of {y,} say again {y,} which converges
weakly to some point y w.r.t the above norms,
i.e. ¥, — ¥y weakly in (L*(I,L*(©)))?, in
(L2(Q))%, and in (L*(1,V))2.
Also, from theorem (3.2),
||}_1)k||L2(1,V*) is bounded and since
(L2(1,V))? < (L2(Q@)* = ((L*(@))?* <
(L2(1,V)?

Then by using the First Compactness Theorem
[13], there exists a subsequence of {y,} say
again {y,} such that y, — y strongly in
(L2(Q))*.

Since for eachk, y;;, and 1y, are
corresponding solutions to the controls wuy
and u,, i.e.,

(Vike» 1) + a1 (&, y1xv1) + (b1 (D) Y11, V1) —
(b(®)y2r,v1)a = (i(x, 6, y11), v1)a

+ (U1, v
and

(Vo V2) +
az (L, Yok, V2) + (b2 (D) Y2k, v2) o +
(b®y1rv2)a = (f2(%, 6, y21), V2)a

F (U V)T coverrerienienieiene e, (41)
1,2. Multiplying both sides of (40) and (41)
by @,(t) and ¢,(t) respectively, and then
integrating both sides w.rt. t from 0 to T,
finally using integration by parts for the 15t
terms in the L.H.S. of the two obtain
equations, to get

— o Do v 1 ()t + [ Tay (6 yuevs) +

(b1 (D)y1k, 1) — (b Y2k, V1)l (D)dt =
fOT(fl (6, t, Y1), V1) a1 (B)dt +

Iy Qaje v)r @1 () dt + (71(0), 1)1 (0)

the norm

and

— Iy G2k 1)@ (Ot + [ [az (8, yoievs) +
(b2 (D)y2k,V2) o + (B(D) Y1k, V1) ol (B)dt =
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fOT(fz (X, 6, Y21), V2) @2 (D)dt +

fOT(UZk» v )r@2(t) dt + (¥21(0), v2) a2 (0),
(43)
Since y, — ¥ weakly in (L?(Q))? and in
(L2(1,V))? , then

— Jy O )Py (Ot + [ a3 (&, Y1k v1) +

(b1 (DY1, v — (BOY2p, v1)ale, (DAt —

— Jy v s (Ot + [ [ar (t,y1,v) +
(b1(D)y1,v1)q — (b(D)y2, V1)l (D) dE

and

- fOT(kaJ V)¢, (t)dt + foT[az(t» Yakr V2) +
(b2(O)y2k, V2)a + (b(DY1r V2)al @1 (D)dt —
— s @2, v2)2 (Dt + [ [az(t,y2,v2) +
(b2(t)y2,v2)q + (b(B)y1, Vo)l (t)dt
.............................. (45a)
Since y;,(0), y2,(0) are bounded in L?(()
and from Projection theorem, one gets that:
i (0), ) a91(0) = (¥, v)a@;(0),i = 1,2
(45b)
Let Vi = 1,2, w; = v;¢04(t), then w;(x, t)
is fixed for fixed (x,t) € Q, and then w; €
L*(I,V) c L2(1,V) c L2(Q). Let v; € C[Q],

then w; € C[Q] is measurable w.rt. (x,t) and
let f;(y1ix) = fiyu)wi, then f:Q xR — R
is continuous with respect to y;, for fixed
(x,t) € Q, then

1/i Gt yue O || < milwil + 1l yurl lwi| =

_ — _ 1 —

7 + Cllyall?, where 77 = - (nf + ¢1lwil®)
By applying proposition (3.1), the integral
foi(yik)widxdt is continuous w.r.t. y,, but
yix — i strongly in L?(Q), then
foi(}’ik)Width - foi(yi)Widthv

VWi € C[Q]
on the other hand, since u;, — u; weakly in
L*(%), Vi = 1,2, then

S, v) @i (1) dydt — [ (u;, v (t)dydt
(44d)
Finally, using (44a, b, c& d) and (45b) in (42-
43), once get that

- fOT(J’L v (B)dt + foT[al(t; Y1, V1) +
(1;1(15)}’1'171)9 = (b(®O)y2,v)alp1(®dt =

Jo (i, t,y1), v) e (D)dt +

foT(u1'171)r @1 (®)dt + 7, v1)ap1(0) .. (46)
— o G2 v2)¢2 (dt + [ [az(t,y2,v,) +
(b2(8)y2,v2)q + (b()y1, V2)alp. ()dt =
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fOT(fz(x: t,¥2), v2)a @2 (D)dt +

Jy @2, v2)r@2()dt + (38, 12)092(0) .......(47)

Equations (46) and (47) are also hold for
each v; € V, Vi = 1,2 (Since C[Q] is dense in
V).

Now, using the same steps which are used
in Case 1 and Case2 in the proof of theorem
3.1, once get that y, and y, are solutions of the
weak form of the state equations.

Now, since g,; is independent of w;, for
eachi =1,2.1.e,

G, () = fQ 911(x, t, y1x) dxdt +

fQ 912(x, t, Yo ) dxdt

From the continuity of g4;(x,t, yix) W.r.t.
v, and the proof of Lemma (4.2), the integral
fQ 91:(x, t, yix) dxdt is continuous W.r.t. y;,

and since y, — ¥ strongly in (L2 (Q))Z, hence
from proposition 3.1, one gets that
G, (@) = limy_, Gy (Uy) = 0.
Again since for each i = 1,2 and [ = 0,2,
91 (x, t, yir) is continuous w.r.t y;, then from
the proof of Lemma (4.2), one has
fQ 91 (%, t, yix) dxdt — fQ u(x, t,y;) dxdt
(48)
From the hypotheses on hy;, hy;(x, t,u;) is
weakly lower semi continuous w.r.t. u;, for
each i = 1,2 and [ = 0,2, then from (48), one
has
fQ 9u (e t,yy) dxdt + [Lhy(xt,u) do <
limy o inf [ hy; (%, t, ug )do + fQ gu(x, t,y;) dxdt
= limy_q inf [5(hy(x, t,uy)do +
limy o fQ(gli(x' t,yi) — gux, t,yg))dxdt +

limy e fQ 9u(x,t, yiy) dxdt

= limy o inf [ hy; (x, t, uy) do +

lim,_,, inf fQ gui(x, t, vy dxdt

= G, W) < Ill_l)’r.}o inf G, (uy), (for each [ = 0,2)
But G, (i) < 0,Vk, then G,(u) < 0, and one
gets that 7 € W, and

Go() < 111_{120 inf Go (tiy) = ,li_{’f.}oGo(ﬁk) =
infﬁeWA GO (ﬁk)
= Go(W) = mingg, Go(Wy) >4 is  a
classical boundary optimal control.

5. The Necessary Conditions for Optimality

This section concerns with the derivation
of the Fréchet derivative under some suitable



assumptions, it concerns also with the proof of
theorem of necessary conditions for optimality
so as the theorem of sufficient conditions
under some additional assumptions. Hence, the
following assumption is very useful.

Assumptions (C):

If fiyi,gliyiand hliui’ (l = 0,1,2 &i= 1,2)
are of Carathéodory type on Q x (R), Q X (R)
and on X x (RR) respectively, such that
(R), Q@ x (R)and on X x (R) respectively,
such that
|fiy: (et y)| < L
|gliyi(xr ty)| < Gl t) + eylyil
and
|h, (6t u) | < i (e, ) + Sl
where(x,t) € Q, y;, u; € R, {;(x,t) € L*(Q),
mi(x, t) € LZ(Z), and eli,fli > 0.

Theorem (5.1):
Dropping index [,
H which is defined by

-

H(xr Ly, Zr ﬂ) = Zizzl(zifi (X, ¢, yl) +
gi(X, t, yl) + hi (x' t, ul))
and the adjoint state z; = z;,,(where y; = yy;)
equation satisfies
] ]
=~z = Xijm1 5, (@ (0D 50 + bi(xn, )z, +
b(x,t)z; = z1f,,(x, t,y1) + gy, (x, £, y1), INQ
F] ]
~Zz¢ = Lij=15, (b0 D 50 + b (%, )z, -

b(x, )z, = 2z, f,,(x, t,¥2) + gy,(x,t,¥2), INQ
z:(x,T) =0 ,onQ

the Hamiltonian

z,(x,T) =0, onQ
9z _ 0, on X
on
9z _ 0, on X
on

Then the Fréchet derivative of G is given by,
AT Zl+hu_1 Au1
GG = <Zz +hu2> () do

= fEHﬁ(xr t,f/,Zﬁ) ) Mda

where:
2

Hyz(x,t,y,Z,1) = '21(Zi + Ry, (x, 1))
l:

Proof:

The weak forms of the adjoint equations
are given by
—(Z16, 1) + a1 (8,21, v1) + (b1 (D21, 1) +
(b(t)z2,v1)0 = (Z1f1y,, V1)a + Gy, V1)a
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—(Z20, V2) + az(t, 22, V) + (b2 (0) 22, v2) g —
(b()z1,v2)q = (Z2f2y,, V2)a *+ (Gy, V2)a
............................... (50)
These weak forms have a unique solution
and this can be proved by the same way which
is used in the proof of theorem 3.2.
Now, substituting v; =z, in (37) and
v, =z, in (38), integrating both sides with
respect to t from 0 to T, then adding two
obtained equations to get
fOT(Ayt'Z)dt + fOT[al(t’ AY11 Zl) +
(b1 ()Ay1,21) o — (b(D)AY,, 21) o +
a,(t,Ay,, v;) + (b, (t)g}’z;vz)n +
(b(t)Ay1,v3)qldt = fo (fi(ys +
Ay, z)adt = [y (fi(1), z1)adt +
T T
fo (Auy, zy)rdt + fo (f2(y2 + Ay2),22)odt —

T T
fo (fa(2), z2)qdt + fo (Auy, zp)rdt ... (51)
From assumption (A-ii), and proposition
(3.2), the Fréchet derivative of f; exists for
each y; € L?, which gives after using the result
of Theorem (4.1)
T
fo (fl'(x' t,yi + Ayl) - fi(x; t'yi)le')ﬂdt =
T
Jo iy 8yi, z)dt + e (Ay) 1Ayl
el(Au)”Au”E,
where, &, (Au) — Oas [|Au|, — 0
By substituting (52) in the R.H.S. of (51), one
has that
fOT(AYt, Z)ydt + fOT[al (t,Ayy,24) +
(b1 ()Ay1,21) o — (b(D)AY,, 21) o +
a,(t,Ay,, v;) + (b, (t)eyZIUZ)Q +
(b(£)Ay1,v;5)qldt = fo (f1y,Ay1, Z1)dt +
T T
Jo 2y, 892, 22)dt + [ (Auy, z;)rdt +
T R —_—
J, (Quy, z5)rdt + el(Au)”Au”Z
............................... (53)
Now, substituting v; = Ay, and v, = Ay,
in the adjoint equations (49) and (50)
respectively, integrating both sides with
respect to t from 0 to T, using integrating by
part for the 15¢ term of each obtained equation,
finally adding these two equations, to get:
T, — T
fo (Ayt’ Z)dt + fo [a(tl Zl) Ayl) +
(b1 (t)z1,Ay1) o + (b(D) 22, Ay1) o +
a,(t,z,Ay,) + (bz(t)?z:AyZ)n -
(b(t)z1,Ayz)qldt = fo (21f1y,,Ay1)qdt +

T
Jy (G1y By ) adt +
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T T
fo (ZZnyZJAyZ)th + fo (QZyziAyZ)th

By subiracting (54) from (655 e ers™ Y
fOT(glyeryl)th + fOT(gZyZ'AyZ)th =
fOT(Aul,Zl)r dt + fOT(AuZ, Z,)rdt +

E1 AU |[BU| oo (55)

NOW, Iet GA(ﬁ) = fQ kl(x, t,yl,yz)d.th,
GB(ﬁ) = fZ kz(x, t, ul, uZ)dO'
where:

ki(x,t,y1,¥2) = g1(x, t,y1) + g2(x, £, ¥2),
ko(x,t,uq,uy) = hy(x, t,uqy) + hy(x, t,uy),

From the Fréchet derivative and the result
of theorem (4.1), one has

Ga(t + Du) — G (@) = |, o1y, Ays +
kay, Ay;)dxdt + &5 (Aw)|[Au|
Gp (i + Au) — Gg(iD) = [ (kau, Duy +
kau, Muz)do + £5(Aw) ||Au|
Adding (56) and (57), to get
GG +Du) = G (@) = [ (gry, bys +
92y,0y2) dxdt + fx(hlu1 Au,y +

hau, Muz)do + &4 (Bu)|[Au
By substituting (55) in (58), gives

GG+ Au) — G (@) = [(Auy,z,)do +
Js(Buy, 25) do + [ (Ryy, Auy +

hau, Muz)do + &5(Buw)|[Au

where g5(Au) - 0 as |[Aul|, - 0

Using proposition (3.2), the Fréchet derivative
of Gis

Z e _ Zl+h1u1 Aul
(G@),Au) = [, <Zz+h2u2> (Au2> do.

Theorem (5.2) Necessary Conditions for
Optimality (Multipliers Theorem):

If 7 € W, is an optimal control, i.e., there

exists multipliers 4, € R,1=0,1,2 with
1o =0,1, =0,Y% |14 = 1 such that
Y2 4 6,@)E@—-W)=0,VLEW .......... (59)

and
A,G, (1) = 0 (Transversality condition) ... (60)
The above relation is equivalent (59) to the

following (weak) point wise minimum
principle.

Hy(x,t, 9,7 )i = ming_, Hy(x,t, 7,7, D)t
AL ON X oo (61)
Where
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2
Hﬁ(x' t, 5;' Z, ﬁ) = 'Zl(Zi + hiui(xr t, ul))
=

2 2
with Zi = Z ){lzli and h’i = Z Alhli!
=0 =0

(fori = 1,2).
Proof:

With assumptions (A),(B) and (C), the
functional G,(¥) and G,(u) (for 1=0,1,2) are
continuous and liner w.r.t. (& — @), then G,(%)
is p —differentiable at each % € W, Vp, Then
by using the  Kuhn-Tucker-Lagrange
multipliers theorems [14], there exists
multipliers 4; e R, =0,1,2, with A1,=>0,
A, =0, ¥2_,|A;| = 1 such that (60) and (61)
are hold, i.e.

(R0Go(@) + 1,6y () + 2,6,@)) - (4 — ) =
0,vieWw

Applying Theorem (5.1), setting Ai=14-1
and substituting the Fréchet derivative of G;,
for [ = 0,1,2 in (58), one has that

3o X2 fy (Mzu + husy, ) (G = updo = 0
Let z; = Y& oAz, hy = Yo Ahy;, for each
i=1,2
= f): Hy(x,t,y,Z,1) . Audo = 0
To prove that (62) is equivalent to (61)

Let
Wﬁ = {E € (L*(zZ, ]R))Zﬁ(x, t) € Ua.e. inZ},
with U c R?, let {} be a dense sequence in

Wﬁ, u is Lebesgue measure on X and let S c X
be a measurable set such that
E(x, £ = {ﬁ}(x, t),'if (x,t)ES

u(x, t),if (x,t) ¢S
Therefore (66) becomes
fs Hyz(x,t,y,Z,1) - (U —u)dS =0,VS
Using theorem (3.1), to get
Hy(x,t,y,Z,1). (U — 1) = 0,a.e.inZ,
which means this inequality is satisfied on the
boundary X of the region Q except in a subset
X, such that u(Z;) =0, Vk, where u is a
Lebesgue measure, i.e. the it satisfies on the
boundary X except in the union of U Z, with
(U Zp) =0, but {ﬁk} is a dense sequence in
the control set W, then there exists & € W
such that

Hyz(x,t,y,Z,0)u =

ming; Hz(x, t, 9,7, D)1,
ae. in %, vii € W. The proof of the converse is

obtained directly.



6. Sufficient Conditions for Optimality
Theorem (6.1) (Sufficient Conditions for
Optimality):

In addition to the assumptions (A), (B) and
(C), suppose that W= Wﬁ is convex, with U
convex, f; and g,;are affine w.r.t. y;for
each(x,t) and i = 1,2, go; and g,;are convex
w.r.t. y;, hy; and h,;are convex with respect to
u; for each (x,t) and, Vi =1,2. Then the
necessary conditions in Theorem (5.2) with
Ao > 0, are sufficient.

Proof:

Supposel is satisfied the K.T.L. condition,

the Transversality condition and u € W, ie.

Z; + hlul) A APy
f (Zz t by Aude >0, vYaeW and
A,G,(1) = 0,
where z; = Z Az and h; = 2 Ay (for
i=12).

Let G (%) = Y2, 4,G,(1), then

C@) - du = T 4Gy (@) - Au =

Ao S5 251 (Z0i + howy,) Au; do +

/11 f 212 1(le+h11u )Aul do

/12.[ Z 1(ZZL+h21.u )Aul 020

since the functions f; &f, in the R.H.S. of the
state equation (1) and (2) are affine with
respect to y;, and y, for each(x,t) € Q
respectively, i.e.,

filx, t,y1) = fii(x, )y, + fiz(x, t) &
fo(x,t,y,) = f21(x'_f)3’2 + f22(x, 1)

Let i = (uy,uy) & u = (i, Uy) are two given
controls and then (by Theorem (3.2)), y =
(yul’yuz) = (ylryZ) & )_] = (yﬁl’}_]ﬁz) =
(71,¥,) are their corresponding solutions, i.e.
and for the 1% state equations and their
corresponding initial condition

Vit — i j= 16 (aij(x,t) _) + by (x, )y, —
b(x,t)y, = f11(x t)y1 +f12(x t)

0
?] 1al] ay ul(x t)
y1(x,0) = yi (x)
and

_ 0 oy _
Vit = Zhjer 3 (@ (0 O 572 + by (6, )71 -
b(x,t)y, a= f11(x, )1 + fi2(x,t)

g,lj=1 bl] 6L - ul (x t)
y1(x,0) = y1 (x)

Jamil A. Ali Al-Hawasy

By multiplying the 15t above equation and
its initial condition by 6, 6 € [0,1], and the
2" equation and its initial condition by
(1-0), and adding the obtained equations
and their obtained initial conditions, one has
(93/1 + (1=60)y1) —

e (0 (e ) TR0
by (x, t)(9y1 + (1 —-60)y) — b(x,0)(0y, +
(1-8)y,) = fi1(x, )0y, + (1 — 0)y1) +
1200 8) i (63a)
Oy, (x,0) + (1 — 0)¥,(x,0) = y2(x) .... (63b)

00y, +(1-0)y1) _
Pio gy 2 = (Guy + (1 - 01y)

0] 110 SRS (63c)

By the same way and for the second
differential equations and their initial
conditions, one gets

By, + 1=y —

90y, +(1-0)¥,)
?} 13 (bu( t)#)"’

by (x, t)(93’21 +(1- 9)3’2) + b(x, t)(0y, +
1 =0)y,) = fL:(D Oy, + (1 —0)y,) +
[22(3,8) e (64a)
6y, (x,0) + (1 — 8)7,(x,0) = y2(x) ... (64b)

9(0y2+(1-60)y2)
tj=1bij e 2 > 2= Ou, + (1 —
OU),0NZ oo (64c)

Equations (63) and (64), tell us that the
control @ = (i, @), with & = 6% + (1 — 6)%
has the corresponding solutions, 321 = (1, 72),
with 5 =67 + (1 — 6) , which means the
operator u +— yy; is convex — linear with
respect to (y, u) for each(x, t).

Now, since for each i = 1,2, gq;(x,t,y;) is
affine w.rt y;, V(x,t) € Q and hy;(x,t,u;) is
affinew.rt. u;, V(x,t) €L, i.e,
91i(x, t,y) = I (x5, )y + Li(x, £),
hyi(x, t’Xi) = Iy; (%, Ou; + I5;(x, £).
Let ©&u are two controls, and y =y; &
y = y- are their corresponding solutions, then
G(6i+(1-0)n) =

fe1 fQ 91:(%, &, Vicouy+ 1-0ywy ) dxdt +
Y fglhy(xt, 0u + (1= 60)a)]do

=Y [fQ 111'(96' t, yi(Gui+(1—9)ﬁi)) +
I (x, t)] dxdt + Ziz=1[fz Li(x, t,0u; +

(1 - 9)171) + I3i(x, t)]dO'
Since the operator i — ¥y is convex — linear,
then
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G(6i+(1-0)u)=

2 (S i )@y + (1 - 0)7) +
L;i(x,t)] dxdt +

Pl LG ©) (Bu; + (1 - 0)@) +
L3i(x,t)] do
G (6T + (1—0)u) =0G,(@) +
(1-6)G,(%)
= G, (1) is convex — linear w.r.t. (y,1),
V(x,t) € Q.
From the Assumptions on g,;&g,; (hy;&hy;)
Vi = 1,2, the integrals

z‘2=1fQ Joi dxdt & f=1 fQ goi dxdt
(Xf1 [y hoy do&YF; [ hoydo) are  convex
w.rt. y; V(x,t) € Qand (are convex w.r.t. u;
V(x,t) € X ), then Go(u)&G, (1) are convex
w.rt (y,u), (V(x,t) €Q,V(x,t)€Z), ie.
G(@) is convex w.rt (y,u), (V(xt)e€
Q,Y(x,t) € L). On the other hand, since
W = Wy is convex, and the Fréchet derivative
of G,(@), (I =0,1,2) exists for each % € W
and it is continuous (by Theorem (5.1) and
assumptions (A),(B)and (C)), then it satisfies
G(@)Au =0, which means G(i) has a
minimum at 4, i.e.
AoGo (W) + 416G, (0) + 2,6, () < AoGo(W) +
A1G1 (W) + 2,6, (W) (65)
Let w € WA, with A, > 0, then Transversality
condition (64), gives
= Go(@) < Go(W), YW € W, since (1, > 0)
Hence 4 is a continuous classical boundary
optimal control for the problem.

Conclusions

In this paper, the existence and uniqueness
theorem of a continuous classical boundary
optimal control vector governing by the
considered couple of nonlinear partial
differential equation of parabolic type with
equality and inequality constraints is proved
using the Galerkin method, the existence of a
classical boundary optimal control is proved
under a suitable conditions, while the
existence and uniqueness solution of the
couple of adjoint vector equations associated
with the considered couple equations of the
state equations is proved and the derivation of
the Fréchet derivative of the Hamiltonian is
derived. Finally the theorem of necessary
conditions and the theorem of sufficient
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conditions of optimality problem with equality
and inequality constrained are proved.
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