
Special Issus: 1st Scientific International Conference, College of Science, Al-Nahrain University, 21-22/11/2017, Part I, pp.123-136 

123 

The Continuous Classical Boundary Optimal Control of a Couple Nonlinear 

Parabolic Partial Differential Equations 
 

Jamil A. Ali Al-Hawasy and Ahmed Abdul Hasan Naeif 

Department of Math., College of Science, Al-Mustansiriyah University, Baghdad-Iraq. 

Corresponding author: Jhawassy17@uomustansiriyah.edu.iq, hawasy20@yahoo.com 

 

Abstract 

In this paper the continuous classical boundary optimal control problem of a couple nonlinear 

partial differential equations of parabolic type is studied. The Galerkin method is used to prove the 

existence and uniqueness theorem of the state vector solution of a couple nonlinear parabolic partial 

differential equations for given (fixed) continuous classical boundary control vector. The theorem 

of the existence of a continuous classical optimal boundary control vector associated with the 

couple of nonlinear parabolic partial differential equations is proved. The existence of a unique 

vector solution of the adjoint equations is studied. The Fréchet derivative is derived; Finally The 

Kuhn-Tucker-Lagrange multipliers theorems is developed and then is used to prove the necessary 

conditions theorem and the sufficient conditions theorem of optimality of a couple of nonlinear 

parabolic equations with equality and inequality constraints.    [DOI: 10.22401/ANJS.00.1.17] 
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1. Introduction 
The objective of optimal control theory is 

to determine the control signals that will cause 

a process to satisfy the physical constraints 

and at the same time minimize (or maximize) 

some performance criterion, [8]. Control 

theory is an application-oriented mathematics 

that deals with the basic principles underlying 

the analysis and design of (control) system. 

Systems can be engineering (air conditioner, 

air craft, and CD player etc.), economic, and 

biological, [12]. In general, there are many 

optimal control problems are governed either 

by ODEs as Orpel in 2009[11] or by different 

types of PDEs and are subject to control and 

state constraints, as El-Borari and et al in 2013 

[9], and Wang, Y. and et al in 2015 [15], 

which are studied an optimal control of 

parabolic partial differential equations, Farag, 

M. H. in 2014[10] studied classical optimal 

control of hyperbolic partial differential 

equations, Diaz and et al in 2012 [7] studied a 

optimal control of elliptic partial differential 

equations, Al-Rawdanee, E. in 2014 [3] 

studied an a classical optimal control of a 

coupled of nonlinear elliptic partial differential 

equations and M. K. Ghufran in 2016 [4] 

studied a classical optimal control of a coupled 

of nonlinear parabolic partial differential 

equations while, Al-Hawasy, J. in 2016 [2] 

studied a classical optimal control of a coupled 

of nonlinear hyperbolic  partial differential 

equations. 

This paper deals with, the proof of the 

existence and uniqueness theorem of the state 

vector solution of a couple nonlinear parabolic 

partial differential equations where the 

continuous classical boundary control vector is 

given, the existence theorem of a continuous 

classical boundary optimal control vector 

associated with a couple nonlinear partial 

differential equations of parabolic type is 

proved, also the derivation of the Fréchet 

derivative is done, the study of the existence 

and uniqueness of the vector solution of the 

adjoint equations which corresponds to the 

state vector. Finally, the Kuhn-Tucker-

Lagrange multipliers theorem is developed and 

is used to prove the necessary conditions 

theorem and the sufficient conditions theorem 

of optimality of a couple of nonlinear 

parabolic equations with equality and 

inequality constraints. 

 

2. Description of the Problem 

Let        ,    ,      be an open 

and bounded region with Lipschitz boundary 

    ,      ,      . Consider the 

following continuous boundary optimal 

control problem: 

The state equation is given by the 

following nonlinear parabolic equation: 
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    ∑
 

   
         

   

   

 
                 

                   , in    ..................... (1) 

    ∑
 

   
         

   

   

 
                 

                   , in     .................... (2) 

∑    
   

  

 
             , on     ................... (3) 

          
    , on     ............................. (4) 

∑    
   

  

 
             , on     ................... (5) 

          
    , on     ............................. (6) 

where for all         ),         

(     )
 
 is the state vector,         

(     )
 
 is the classical boundary control 

vector,         (     )
 
 is a vector of a 

given function defined (            , 

and         ,         ,        and         

     . 
 ⃗⃗⃗   

{ ⃗⃗             | ⃗⃗   ⃗⃗               ⃗⃗         ⃗⃗     } 

 ⃗⃗    .  

The cost function is  
    ⃗   

∫ [            
 

 

           ]     ∫ [                       ]  
 

 
   

 ................................. (7) 

The constraints on the state and the control 

vectors are 
    ⃗   ∫ [                       ]     

 

 

∫ [                       ]  
 

 
    

 ................................. (8) 
    ⃗   ∫ [                       ]     

 

 

∫ [                       ]    
 

 
  

 ................................. (9) 

where         (   
    

) is the solution of 

(1-6) corresponding to the boundary control 

vector       . 

Let ⃗      ,      (     )
 
-,           .  

We denote by       and ‖ ‖  (by        

and ‖ ‖ ) the inner product and the norm in 

    ) (in     )), by        and ‖ ‖  the inner 

product and the norm in      , by          

and ‖  ‖  (by          and ‖  ‖   the inner 

product and the norm in           )( in 

          )) by                   
         and ‖  ‖ 

  ‖  ‖ 
  ‖  ‖ 

   the 

inner product and the norm in  ⃗  and   ⃗   is the 

dual of  ⃗ .  
 

  

3. Weak Formulation of the State Equations 
The weak forms of the problem (1-6) when 

      
       are given almost everywhere on 

  (        ,                  ) by  

〈      〉                            
                               

,  

  .............................. (10a) 

   
                    ........................ (10b)  

and 

〈      〉                             
                              ,  

 ............................... (11a)  

   
                     ....................... (11b) 

Where               ∫ ∑    
   

   

 
     

 

 

   

   
  , 

            ∫ ∑    
   

   

 
     

   

   
  

 

 
 

. 

To study the existence of unique solution of 

the weak form (10-11), we consider the 

following assumption. 

 

Assumptions (A): 

(i)    is of a Carathéodory type on    , 

satisfies the following sub linearity 

condition for   ,i.e. |          |  
          |  | 

Where        ,     ,      and 

          ,        

(ii)    is Lipschitz w.r.t.   , i.e.   |           
        ̂  |    |    ̂ | 

(iii)Where        ,     ̂    and       
       

(iv)            
                           
                         , and 
|          |   ‖  ‖ ‖  ‖ ,           
 ̅‖  ‖ 

 , where    ̅ are real positive 

constants 
 

Proposition (3.1), [6]:  

Let           is of a Carathéodory 

type, let   be a functional, such that 

     ∫  (      )  
 

 
,  

where   is measurable subset of   (     ), 

and suppose that  

‖      ‖           ‖ ‖ ,          
  ,            

Where              ,    
 

         , 

and   [   ], if   [    , and    , if 

   . Then   is continuous on        . 
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Proposition (3.2), [6]: 

Let  &           are Carathéodory 

type, let           be a functional, such 

that,      ∫             
 

 
 where   is a 

measurable subset of   , and  

‖       ‖           ‖ ‖
 
 ,        

    ,  

Where          , 
 

 
 

 

 
  ,   

 
  

         ,   [   ] if    , and     , 

if     

Then the Fréchet derivative of   exists for 

each            and is given by: 

 ́     ∫   (      )      
 

 
.   

 

Theorem (3.1), [14]: 

Let   be a measurable subset of   , 

      and          . 
If the following inequality is satisfied 

∫         
 

 
 (or       , for each 

measurable set    , then  

       (or       , a.e. in  . 

 

Theorem (3.2) (Existence and Uniqueness of 

Solution of the State Equations): 

With assumptions (A), for each fixed 

boundary control  ⃗         
 , the weak form 

of the state equations (10-11) has a unique 

solution          , s.t. 

   (       )
 
and              

(        )
 
 

Proof:  

Let  ⃗    ⃗  be the set of continuous and 

piecewise affine functions in  , let 

{             } be basis of  ⃗   where      

(where   is the dimension of each  ), then the 

approximate solution    of (10-11) is 

approximated by                such that, 

for each    

    ∑   
 
              ............................... (12)  

where  

                          and        

For           ,                 
and       is unknown function of  t.  

The weak forms of the state equations (10) 

and (11) can be approximated w.r.t. the space 

variable, using the Galerkin’s method to get, 
 

〈       〉                
                             
                        ....................... (13a) 

    
          

                  ......... (13b)  

and 

〈       〉               
                             
                        ....................... (14a) 

    
          

      ,  .......................... (14b)  

where    
                      is 

the projection of   
  for the norm ‖ ‖  i.e. 

(   
    )  (  

    )           ‖   
  

  
 ‖

 
 ‖  

    ‖ 
,        ,        

By substituting (12) in (13 a& b) and in  

(14 a & b), one obtains  

    
                      

     ̅ 
            ..................................... (12ʹa) 

          
   ......................................... (12ʹb) 

    
                      

     ̅ 
            ..................................... (13ʹa) 

         
    ......................................... (13ʹb) 

where: 

   (   )   
,      (       ) ,  

   (   )   
,     [  (         ) 

 

(            ) ],    (   )   
,     

(           ) ,       (      )
   

, 

  
      (   

    )
   

,       (      )
   

, 

           ,          ̅ 
              

         ,   ̅          ,   
  (   

 ),    
   

(  
     ) , and    (   )   

,     

(       ) ,    (   )   
,     

[  (         )                 ],    

(   )   
,                   ,      .   

From assumptions (A), easily once can get 

that the matrices   &   are positive definite, 

therefore the system (12ʹ-13ʹ) of     order 

differential equation has unique solution [5]. 

Now, to show the norm ‖   
 ‖  is bounded:  

Since             , then there exists {   
 }, 

with    
   ⃗   such that    

      strongly in 

         and then from the projection theorem 

and (13b & 14b) one obtains that     
      

Strongly in          with ‖   
 ‖     . 

The norm ‖      ‖  (       )
 and ‖      ‖  are 

bounded: 



Jamil A. Ali Al-Hawasy 

126 

Setting        in (13a) and        in 

(14a), integrating both sides of each obtaining 

equation for   from 0 to  , and adding them 

finally with Assumption (A-iii), one has  

∫ 〈        〉  
 

 
 ∫                

 

 
 

∫                 
 

 
 ∫                 

 

 
   

∫             ∫            
 

 

 

 
,  ............ (15)  

Since                             and 

               in the     term of the L.H.S. 

of (15), hence for this term we can use Lemma 

1.2 in [13] and since the     term is positive, 

taking     [   ], finally using, and 

Assumption (A-i) for the     two terms in the 

right hand side (for briefly will use R.H.S. 

from here and next) of (15), one has 

∫  

  
‖      ‖ 

  

 
   ‖  ‖ 

  ‖  ‖  
  

‖  ‖ 
  ‖  ‖ 

    ∫ ‖   ‖ 
  

 
  ,  

 ‖      ‖ 
  ‖      ‖ 

           

     ∫ ‖   ‖ 
  

 
    

 ‖      ‖ 
       ∫ ‖   ‖ 

  

 
    

By using the Belman- Gronwall inequality, 

one gets  

 ‖      ‖  (       )
     

hence  

‖      ‖ 
  ∫ ‖   ‖ 

   
 

 
 

       [   ]‖      ‖ 
  

        
       

The norm ‖      ‖        is bounded: 

Again by using Lemma 1.2 in [13] for the     

term in the L.H.S. of (15), then using same 

results which are obtained from the R.H.S., 

finally setting    , and ‖      ‖ 
   , 

equation (15) becomes 

‖      ‖ 
    ̅ ∫ ‖   ‖ 

    ‖  ‖ 
  

 

 

‖  ‖ 
  ‖  ‖ 

  ‖  ‖ 
    ‖   ‖ 

  

‖      ‖ 
   

 ‖   ‖             

 

The convergence of the solution: 

Let { ⃗  }   

 
 be a sequence of subspaces of 

 ⃗ , such that               ⃗ , there exists a 

sequence {   } with                ⃗  ,   , 

and        strongly in  ⃗          

strongly in (     )
 
.  

 

Since for each, with  ⃗    ⃗ , problems 

(13a&b) and (14a&b) have a unique solutions 

   ,     respectively, hence corresponding to 

the sequence subspaces { ⃗  }   

 
, one obtain a 

sequence of  approximation problems (13 

a&b) and (14 a&b), by substituting        
          for        , in these 

approximation problem, one gets  

〈        〉                
                               
                        ,          
        a.e in    ......................................... (16a) 

    
           

                 ,     

 .............................. (16b)  

and 

〈        〉  
                              
               

   

                        ,          
         a.e.in    ........................................ (17a) 

    
           

       ,            

  ............................. (17b)  

which has a sequence of solutions {   }   
 , 

where nm             . Since the norms 

‖   ‖      and ‖   ‖        are bounded, then 

by Alaoglu’s theorem, there exists a 

subsequence of {   }   , say again {   }    

such that         weakly in (     )
 
 and in 

(       )
 
.  

Then through the First Compactness 

Theorem, Assumption (A-i), and the bounded 

norms results, once get         strongly in 

(     )
 
. 

Now, consider the weak state equations 

(16a&b), (17a&b) and take any arbitrary, 

       ,then there exists a sequence {   }  
{   } respectively,       ,     such that 

       strongly in   (which gives        

strongly in      ),       .  

Multiplying both sides of (16a) and (17a) 

by         [   ] respectively, with 

                integrating with respect 

to   from   to  , and then integrating by parts 

the     term in the L.H.S. of each obtained 

equation, one gets that  
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 ∫            
       

 

 

∫ [
 

 
                              

              ]         

    ∫                      
 

 
 

∫         
 

 
            

              

 ................................ (18) 

and 

 ∫            
       

 

 

∫ [  
 

 
                            

              ]         

   ∫                      
 

 
 

∫       
 

 
              

              

  ............................... (19) 

Since                weakly in 

     ,    
    

  strongly in      , and  

                         
    

                    
}  

{
     

      
                  

                        
      

  

Then the following convergences hold 

∫            
       ∫ [  

 

 
            

 

 

                
              ]         

∫          
       ∫ [            

 

 

 

 

                          ]           
  ............................... (20) 

    
                

             ...... (21) 

and 

∫            
       ∫ [              

 

 

 

 

                
              ]         

∫          
       ∫ [            

 

 

 

 

                          ]         
  ............................... (22)  

    
                

             ..... (23) 

On the other hand, let           and 

        then       ,        strongly 

in       and then     is measurable w.r.t. 

     , using assumption (A-i), then applying 

Proposition (3.1), the integral 

∫                   
 

 
 is continuous w.r.t. 

         , but       strongly in      , 
then  

∫                      
 

 
 

∫                    
 

 
 ,         

From (20-23) and the above converges, (18) 

and (19) become 

 ∫          
       ∫ [            

 

 

 

 

                          ]        

∫                     
 

 

∫         
 

 
           

           
 
  

  ............................... (24) 

and 

 ∫          
       ∫ [            

 

 

 

 

                          ]        

∫                    
 

  
 

∫         
 

 
           

              

 ................................ (25) 

Now we have following two cases:  
 

Case 1:  

Choose     [   ]  i.e.       
       ,        substituting  these values 

for    in (24) and (25), finally using 

integration by parts for the     terms in the 

L.H.S. of each one of the obtained equations, 

yield 

∫                 ∫ [            
 

 

 

 

                               ]       

∫                    
 

 
 

∫         
 

 
         .................................. (26) 

and 

∫                 ∫ [            
 

 

 

 

                               ]       

∫                    
 

 
 

∫         
 

 
       ,   ............................... (27)  

i.e.,   &  are solutions of the state equations 

(10a) & (11a) respectively. 
 

Case 2:  

Choose     [   ],       , such that 

        &          
Using integration by parts for the     term 

in the L.H.S. of (26) & (27)and subtracting 

two each obtained equations of (24),(25) 

respectively one gets  

   
                            ,  

      
                    

i.e., the initial condition (10b) holds. Easily 

one can see that the initial condition (11b) 

holds. 

The strong convergence for     in        : 
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By substituting        and        in 

(10a) and (13a) respectively and also 

substituting       and       in (11a) and 

(14a) respectively, integrating these four 

equations from     to     finally adding 

the equations which is obtained from (10a) 

with that obtained from (13a) to gather and the 

same thing happened for (11a), (14a), to get: 

∫ 〈      〉
 

 
    

∫              ∫ [             
 

 

 

 

            ]   ∫          
 

 
 ∫         

 

 
 

 ................................................................... (28a) 

and 

∫ 〈        〉
 

 
    ∫                

 

 

∫ [                           ]   
 

 

∫             
 

 
∫            

 

 
  ........... (28b) 

Using Lemma 1.2 in [13] for the     terms 

in the L.H.S. of (28a&b), once get, 

  
 
‖     ‖ 

   

 
‖     ‖ 

  ∫              
 

 

∫ [                         ]
 

 
     

∫            ∫           
 

 

 

 
   .............. (29a) 

and 
 

 
‖      ‖ 

   

 
‖      ‖ 

  ∫                
 

 

∫ [                             ]
 

 
     

∫             ∫            
 

 

 

 
    ......... (29b)  

Now, consider the following equality: 
 

 
‖            ‖ 

   

 
‖            ‖ 

  

∫                   
 

 
             

  ............................... (30)  

where: 

(  )    
 
‖      ‖ 

   

 
‖      ‖ 

  

∫  (               )  
 

 
 

(  )  

 
(            )   

 
(            )  

∫  (              )
 

 
   

and  

(  )  

 
(                  )   

 
(             

    )  ∫  (                    )  
 

 
 

Since (form the projection theorem, see 

prove theorem 3.2) 

   
                   strongly in 

(     )
 
  .................................................. (31a)  

             strongly in (     )
 
  ..... (31b)  

Then  

(                  )     (             

     )     ............................................... (31c) 

‖            ‖ 
     ‖            ‖ 

     
  ............................. (31d)  

and since        weakly in (       )
 
  then  

∫  (                    )  
 

 
    ....... (31e)  

From proposition (3.1), the integral 

∫              
 

 
   is continuous w.r.t.     then  

∫ [                           ]
 

 
   

∫ [                       ]  
 

 
  ........... (31f) 

since         strongly in      ,       . 

Now, when     in both sides of (30), 

one has the following results:  

1. The first two terms in the L.H.S. of (30) are 

tending to zero (from 31d) 

2.Eq.(  )
    
 

     
∫ [              

 

 

             ]     ∫ [                   ]  
 

 
   

    
 

     
∫ [                         ]

 

 

  

 ∫            ∫           
 

 

 

 

 

3. Eq.(  ) 

 L.H.S.of(29a)  ∫ [             
 

 

            ]    ∫ [          
 

 
 

         ]   

4. The three terms in (  ) are tending to zero 

from(31c) and c(31e).  
 

From the above steps, (30) gives that: 

∫                       
 

 
  

which means that: 

 ̅ ∫ ‖      ‖ 
  

 
            strongly in 

(       )
 
. 

 

Uniqueness of the solution:  

Let              ̂    ̂   ̂   be two 

solutions of the state equations (10a)-(11a), 

i.e.         , i.e., first from (10a), one has  

〈      〉                            
                                   

    

〈 ̂     〉        ̂             ̂       
      ̂            ̂                 

   

By subtracting the     equation from the 

   one, then substituting       ̂ , to get 
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〈     ̂        ̂ 〉           ̂     
 ̂              ̂       ̂    
          ̂                
    ̂       ̂    

   ..................................... (32)  

Second form (11a), and by the same above 

way but for     ̂ , the following equality is 

also obtained 

〈     ̂        ̂ 〉           ̂     
 ̂              ̂       ̂    
          ̂       ̂    

         

    ̂       ̂   ,   .................................... (33)  

Adding (32) and (33), applying Lemma 1.2 

in [13] for the     term of L.H.S of above 

equality, using assumption A-iii, yields  

 

 

 

  
‖    ̂ ‖

 

 
  ̅‖    ̂ ‖

 

 
 |        

    ̂       ̂                ̂      
 ̂   |  ......................................................... (34)  

Keep in mind the second term in the 

L.H.S. of (34) is positive, integration both 

sides of (34) with respect to   from   to  , then 

using assumptions (A-ii) of the R.H.S, finally 

using Belman - Gronwall inequality, one gets 

‖       ̂    ‖
 

 
  ,     ‖    ̂ ‖

       
 

        ̂ .  

 

4. Existence of a classical Boundary 

Optimal Control 

The following theorem and lemma are 

important to study the existence of a classical 

boundary optimal control vector. 

 

Theorem (4.1):  

(a) In addition to assumptions (A), if    and 

     ⃗⃗⃗⃗  ⃗  are the states vectors corresponding to 

the controls vectors  ⃗  and  ⃗    ⃗⃗⃗⃗  ⃗  if  ⃗  and   ⃗⃗⃗⃗  ⃗ 
are bounded in         , then 

‖  ⃗⃗⃗⃗  ⃗‖
  (       )

  ‖  ⃗⃗⃗⃗  ⃗‖
 
, ‖  ⃗⃗⃗⃗  ⃗‖

     
 

 ‖  ⃗⃗⃗⃗  ⃗‖
 
  and  ‖  ⃗⃗⃗⃗  ⃗‖

       
  ‖  ⃗⃗⃗⃗  ⃗‖

 
 

(b) With assumptions (A), the operator 

 ⃗     ⃗⃗  from         in to    (       )    

or in to             or in to          is 

continuous.  

Proof: 

(a) Let  ⃗                    then by 

theorem (3.1) there exists    (      
    

   
) which satisfies the weak forms (10a&b) - 

(11a&b),        , also let  ⃗̂    ̂   ̂   

           then  ̂    ̂   ̂   is the 

corresponding solution of the following weak 

forms 

〈 ̂     〉        ̂             ̂       
      ̂            ̂          ̂       

  

  .............................. (35a) 

  ̂             
        ........................ (35b) 

and 

〈 ̂     〉        ̂             ̂       
      ̂            ̂          ̂        

  

  .............................. (36a) 

  ̂             
        ........................ (36b) 

By subtracting (10a&b) and (11a&b) from 

(35a&b), (36a&b) respectively, setting 

     ̂    ,      ̂           ̂  
   and      ̂     in each one of the two 

obtained equations, i.e.  

〈       〉  
                            
                               

   

                          ..................... (37a) 
                .................................. (37b) 

and 

〈       〉  
                            
                               

  

                       ,  .................. (38a) 
                 ................................. (38b) 

By substituting        in (37a) and 

       in (38a), adding the obtained 

equations, using Lemma 1.2 in [13] for the     

term and Assumption (A-iii) in the L.H.S. of 

the obtained equation, one gets 

  

 

 

  
‖  ⃗⃗⃗⃗  ⃗‖

 

 
  ̅‖  ⃗⃗⃗⃗  ⃗‖

 

 
 |            

           |+|                        |  
|         |  |         |  ...................... (39) 

Since the     term of L.H.S. of (39) is 

positive, integrating both sides w.r.t.   from   

to  , then using assumptions (A-ii), and then 

using the Cauchy-Schwarz inequality for the 

R.H.S., finally using the Trace operator, to get  

‖  ⃗⃗⃗⃗  ⃗   ‖
 

 
   ‖  ⃗⃗⃗⃗  ⃗‖

 

 
   ∫ ‖  ⃗⃗⃗⃗  ⃗ ‖ 

  

 
          

where    refers to a summation for constants 

Applying the Belman-Gronwall inequality 

gives 

‖  ⃗⃗⃗⃗  ⃗   ‖
 
  ‖  ⃗⃗⃗⃗  ⃗‖

 
,   [   ] 

 ‖  ⃗⃗⃗⃗  ⃗‖
  (       )

  ‖  ⃗⃗⃗⃗  ⃗‖
 
    [   ] 

From this result, easily once can get that 
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‖  ⃗⃗⃗⃗  ⃗‖
     

  ‖   ⃗⃗⃗⃗ ⃗⃗ ‖
 
  and ‖  ⃗⃗⃗⃗  ⃗‖

       
  ‖   ⃗⃗⃗⃗ ⃗⃗ ‖

 
 

(b) Let    ⃗⃗⃗⃗⃗⃗   ⃗    ⃗   and   ⃗⃗⃗⃗  ⃗          

where    and     are the correspond states to 

the boundary controls  ⃗  and ⃗    then frompart 

(a) of this theorem,once get that the operator 

 ⃗     is Lipschitz continuous from          

in to    (       )  . The other result is 

obtained easily. 

 

Assumptions (B): 

Consider     and     (for each         

and       ) is of Carathéodory type on 

      and on      respectly and satisfies 

the following sub quadratic condition w.r.t.    

and    

|           |  
                

  |           |           
       

   

where         with                     
 

Lemma (4.2): 
With assumptions (B), the functional 

    ⃗  , is continuous on         for each 

       .  

Proof: 

From assumptions (B), with Using 

proposition (3.1), the integrals 

∫            
 

 
     and ∫            

 

 
   are 

continuous on       and       respectively 

for each      ,              ⃗   is 

continuous on         ,         .  

 

Theorem (4.3): 

In addition to assumptions (A), and (B), If 

the set of controls is of the form  ⃗⃗⃗   ⃗⃗⃗  ⃗⃗  with 

 ⃗⃗  is convex and compact, ⃗⃗⃗    , if for each 

     ,     ⃗  ) is independent of   ,     ⃗   
and    ⃗   are convex w.r.t.    for fixed 

         for each      . Then there exists a 

boundary optimal control vector. 

Proof: 

Since the set    is convex, closed and 

bounded for each      , then       is 

convex, closed and bounded, which gives 

      is weakly compact. Since  ⃗⃗⃗    , 

then there exists  ⃗̅   ⃗⃗⃗   and there exists a 

minimum sequence { ⃗  } with  ⃗    ⃗⃗⃗       

such that,           ⃗        ⃗⃗̅   ⃗⃗⃗      ⃗̅  . 

But  ⃗⃗⃗  is weakly compact, there exists a 

subsequence of { ⃗  } say again { ⃗  } which 

converges weakly to some point  ⃗  in  ⃗⃗⃗ , i.e. 

 ⃗    ⃗  weakly in         , and ‖ ⃗  ‖     
   .   

From theorem (3.2) for each boundary control 

 ⃗  , the state equation has a unique solution 

       ⃗⃗   and the norms ‖   ‖           , 

‖   ‖      and ‖   ‖        are bounded, then by 

Alaoglu’s theorem there exists a subsequence 

of {   } say again {   } which converges 

weakly to some point    w.r.t the above norms, 

i.e.        weakly in               , in 

        , and in           .  

Also, from theorem (3.2), the norm 

‖   ‖         is bounded and since  

                                
             
Then by using the First Compactness Theorem 

[13], there exists a subsequence of {   } say 

again {   } such that        strongly in 

        .  

Since for each  ,     and     are 

corresponding solutions to the controls     

and    , i.e., 

〈       〉                             
                                

  

            ............................................... (40) 

and 

〈       〉  
                            
                                

  

            ............................................... (41) 

Let      [ ]  with              
      Multiplying both sides of (40) and (41) 

by       and       respectively, and then 

integrating both sides w.r.t.   from   to  , 

finally using integration by parts for the     

terms in the L.H.S. of the two obtain 

equations, to get  

 ∫          ́ 
 

 
      ∫ [            

 

 

                            ]        

∫                          
 

 

∫                                    
 

  
  

  ............................... (42) 

and 

 ∫          ́ 
 

 
      ∫ [            

 

 

                            ]         
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  ∫                          
 

 

∫                   
 

 
                 ,  

 ...............................  (43) 

Since        weakly in          and in 

           , then  

 ∫          ́ 
 

 
      ∫ [             

 

 

                            ]         

 ∫         ́ 
 

 
      ∫ [            

 

 

                          ]          
  .............................. (44a) 

and 

 ∫          ́ 
 

 
      ∫ [             

 

 

                            ]           

 ∫         ́ 
 

 
      ∫ [            

 

 

                          ]          
  .............................. (45a) 

Since               are bounded in       
and from Projection theorem, one gets that: 

                     
           ,      

 ............................ (45b) 

Let                   , then         

is fixed for fixed        , and then    
                     . Let     [ ̅]  
then     [ ̅] is measurable w.r.t.       and 

let   ̅               , then   ̅       

is continuous with respect to     for fixed 

       , then 

‖  ̅           ‖    |  |    |    ||  |  

 ̅ 
    ̅‖   ‖

 , where  ̅ 
  

 

 
   

    ̅|  |
   

By applying proposition (3.1), the integral  

∫    
 

 
            is continuous w.r.t.     but 

       strongly in        then  

∫    
 

 
           ∫    

 

 
         ,  

     [ ̅]  .............................................. (44c)  

on the other hand, since        weakly in 

     ,         then 

∫              
 

 
     ∫  

 

 
                 

  ............................. (44d)  

Finally, using (44a, b, c& d) and (45b) in (42-

43), once get that  

 ∫         ́ 
 

 
      ∫ [            

 

 

                          ]         

∫             
 

 
            

∫         
 

 
           

             .......... (46) 

 ∫         ́ 
 

 
      ∫ [            

 

 

                          ]        

∫             
 

 
            

∫              
 

 
       

              ....... (47)  

Equations (46) and (47) are also hold for 

each              (Since  [ ̅] is dense in 

 ). 

Now, using the same steps which are used 

in Case 1 and Case2 in the proof of theorem 

3.1, once get that    and    are solutions of the 

weak form of the state equations. 

Now, since     is independent of   , for 

each      . i.e., 

    ⃗    ∫             
 

 
     

∫             
 

 
      

From the continuity of              w.r.t. 

   and the proof of Lemma (4.2), the integral 

∫             
 

 
     is continuous w.r.t.     

and since        strongly in (     )
 
  hence 

from proposition 3.1, one gets that 

          ⃗             ⃗     . 

Again since for each       and      , 

             is continuous w.r.t       then from 

the proof of Lemma (4.2), one has  

∫             
 

 
     ∫            

 

 
      

  ............................... (48) 

From the hypotheses on    ,             is 

weakly lower semi continuous w.r.t.   , for 

each       and      , then from (48), one 

has  

∫            
 

 
     ∫            

 

 
   

         ∫               
 

  
 ∫            

 

 
      

             ∫                
 

 
 

      ∫                               
 

 
 

 

   

      ∫             
 

 
      

          ∫             
 

 
   

           ∫             
 

 
      

     ⃗      
   

       ⃗   , (for each      ) 

But     ⃗          then      ⃗      and one 

gets that  ⃗   ⃗⃗⃗   and 

     ⃗      
   

       ⃗       
   

    ⃗    

    ⃗⃗̅   ⃗⃗⃗    ( ⃗̅  ) 

     ⃗       ⃗⃗̅   ⃗⃗⃗  
  ( ⃗̅  )   ⃗  is a 

classical boundary optimal control. 

 

5. The Necessary Conditions for Optimality 

This section concerns with the derivation 

of the Fréchet derivative under some suitable 
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assumptions, it concerns also with the proof of 

theorem of necessary conditions for optimality 

so as the theorem of sufficient conditions 

under some additional assumptions. Hence, the 

following assumption is very useful. 

 

Assumptions (C):  

If     
      

and      
  (        &      ) 

are of Carathéodory type on      ,       

and on       respectively, such that 

          and on       respectively, 

such that  

|    
        |   ́  

|     
        |              |  |  

and 

|     
        |              |  |  

where       ,                         
              , and          . 

 

Theorem (5.1): 

Dropping index  , the Hamiltonian 

  which is defined by 

             ⃗   ∑                
   

                        
and the adjoint state       (where         

equation satisfies  

     ∑
 

   
         

   

   

 
                 

              
            

        , in  

     ∑
 

   
         

   

   

 
                 

              
            

        , in  

            , on   

              on   
   

  
   ,           on    

   

  
               on    

Then the Fréchet derivative of   is given by, 

 ́  ⃗    ⃗⃗⃗⃗  ⃗  ∫ .
      

      

/
 

 
 (

   

   
)    

 ∫   ⃗⃗             ⃗  
 

 
   ⃗⃗⃗⃗  ⃗    

where: 

  ⃗⃗             ⃗   ∑
 

   
        

           

Proof: 

The weak forms of the adjoint equations 

are given by  

 〈      〉                            
                    

          
      

  

  ............................... (49) 

 〈      〉                            
                    

          
      

   

  ............................... (50) 

These weak forms have a unique solution 

and this can be proved by the same way which 

is used in the proof of theorem 3.2. 

Now, substituting       in (37) and 

      in (38), integrating both sides with 

respect to   from   to  , then adding two 

obtained equations to get 

∫ 〈  ⃗⃗⃗⃗  ⃗    〉   
 

 
∫ [             

 

 

                             
                            

             ]   ∫        
 

 

            ∫                
 

 

∫             ∫                    
 

 

 

 

∫                ∫            
 

 

 

 
  ....... (51) 

From assumption (A-ii), and proposition 

(3.2), the Fréchet derivative of    exists for 

each      , which gives after using the result 

of Theorem (4.1)  

∫  
 

 
                                 

∫  
 

 
    

                  ‖   ‖   

     ⃗⃗⃗⃗  ⃗ ‖  ⃗⃗⃗⃗  ⃗‖ 
   ........................................... (52) 

where,   (  ⃗⃗⃗⃗  ⃗)   as ‖  ⃗⃗⃗⃗  ⃗‖
 
   

By substituting (52) in the R.H.S. of (51), one 

has that  

∫ 〈  ⃗⃗⃗⃗  ⃗    〉   
 

 
∫ [             

 

 

                             
                            

             ]   ∫      
           

 

 

∫      
            ∫             

 

 

 

 

∫            
 

 
      ⃗⃗⃗⃗  ⃗ ‖  ⃗⃗⃗⃗  ⃗‖ 

  

  ............................... (53) 

Now, substituting        and        

in the adjoint equations (49) and (50) 

respectively, integrating both sides with 

respect to   from   to  , using integrating by 

part for the     term of each obtained equation, 

finally adding these two equations, to get: 

∫ 〈  ⃗⃗⃗⃗  ⃗    〉   ∫ [            
 

 

 

 

                             
                            

             ]   ∫        
         

 

 

∫      
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∫        
         ∫      

        
 

 

 

 
  

  ............................... (54) 

By subtracting (54) from (53), one gets 

∫ (    
    )   

 

 
 ∫ (    

    )   
 

 
 

∫          
 

 
   ∫            

 

 
 

     ⃗⃗⃗⃗  ⃗ ‖  ⃗⃗⃗⃗  ⃗‖ 
  ............................................ (55)  

Now, let     ⃗   ∫                  
 

 
, 

    ⃗   ∫                
 

 
 

where: 

                                   ,   
                                   ,    

From the Fréchet derivative and the result 

of theorem (4.1), one has 

  ( ⃗    ⃗⃗⃗⃗  ⃗)      ⃗   ∫      

 

 
    

    
              ⃗⃗⃗⃗  ⃗ ‖  ⃗⃗⃗⃗  ⃗‖ 

  ................ (56) 

  ( ⃗    ⃗⃗⃗⃗  ⃗)      ⃗   ∫      

 

 
    

    
            ⃗⃗⃗⃗  ⃗ ‖  ⃗⃗⃗⃗  ⃗‖ 

  ................... (57) 

Adding (56) and (57), to get 

   ⃗    ⃗⃗⃗⃗  ⃗      ⃗     ∫      

 

 
    

    
          ∫      

 

 
    

    
             ⃗⃗⃗⃗  ⃗ ‖  ⃗⃗⃗⃗  ⃗‖ 

  ................... (58) 

By substituting (55) in (58), gives 

    ⃗    ⃗⃗⃗⃗  ⃗      ⃗     ∫         
 

 
   

∫         
 

  
   ∫      

 

 
    

    
             ⃗⃗⃗⃗  ⃗ ‖  ⃗⃗⃗⃗  ⃗‖ 

 

where      ⃗⃗⃗⃗  ⃗    as ‖  ⃗⃗⃗⃗  ⃗‖
 
   

Using proposition (3.2), the Fréchet derivative 

of  G is 

( ́  ⃗     ⃗⃗⃗⃗  ⃗)  ∫ .
       

       

/
 

 
(
   

   
)   . 

 

Theorem (5.2) Necessary Conditions for 

Optimality (Multipliers Theorem): 

If  ⃗   ⃗⃗⃗   is an optimal control, i.e., there 

exists multipliers              with 

          , ∑ |  |
 
      such that  

∑   
 
    ́   ⃗     ⃗́   ⃗ )      ⃗́   ⃗⃗⃗   .......... (59) 

and 

      ⃗     (Transversality condition)  ... (60) 

The above relation is equivalent (59) to the 

following (weak) point wise minimum 

principle.  

  ⃗⃗             ⃗   ⃗     
 ⃗⃗́   

  ⃗⃗             ⃗   ⃗́  

a.e on     ..................................................... (61) 

Where 

  ⃗⃗             ⃗   ∑
 

   
        

           

with    ∑
 

   
      and    ∑

 

   
     ,  

(for      ). 

Proof: 
With assumptions (A),(B) and (C), the 

functional     ⃗   and  ́   ⃗   (for  =0,1,2) are 

continuous and liner w.r.t.   ⃗́   ⃗ ), then     ⃗   

is   differentiable at each  ⃗   ⃗⃗⃗     , Then 

by using the Kuhn-Tucker-Lagrange 

multipliers theorems [14], there exists  

multipliers               with       
      ∑ |  |    

    such that (60) and (61) 

are hold, i.e. 

(   ́   ⃗      ́   ⃗      ́   ⃗  )  ( ⃗́   ⃗ )  

  ,   ⃗́   ⃗⃗⃗  

Applying Theorem (5.1), setting   ⃗⃗⃗⃗  ⃗   ⃗́   ⃗  
and substituting the Fréchet derivative of   , 

for          in (58), one has that   

 ∑ ∑ ∫ (            
)

 

 
  ́    

 
       

       

Let     ∑   
 
            ∑      

 
   , for each 

      

  ∫   ⃗⃗             ⃗  
 

 
   ⃗⃗⃗⃗  ⃗      .............. (62) 

To prove that (62) is equivalent to (61) 

Let 

 ⃗⃗⃗  ⃗⃗  { ⃗́            | ⃗́        ⃗⃗        }, 

with  ⃗⃗      let { ⃗́ } be a dense sequence in 

 ⃗⃗⃗  ⃗⃗     is Lebesgue measure on   and let     

be a measurable set such that  

  ⃗́       {
 ⃗                  

 ⃗                 
 

Therefore (66) becomes 

∫   ⃗⃗             ⃗  
 

 
   ⃗    ⃗      ,    

Using theorem (3.1), to get  

  ⃗⃗             ⃗     ⃗    ⃗      a.e. in  ,  

which means this inequality is satisfied on the 

boundary   of the region   except in a subset 

   such that            , where   is a 

Lebesgue measure, i.e. the it satisfies on the 

boundary    except in the union of ⋃     with 

  ⋃         but { ⃗̅  } is a dense sequence in 

the control set   ⃗⃗⃗   then there exists  ⃗̅   ⃗⃗⃗  

such that  

  ⃗⃗             ⃗   ⃗      ⃗⃗   ⃗⃗   ⃗⃗             ⃗   ⃗́ , 

a.e. in  ,   ⃗̅   ⃗⃗⃗ . The proof of the converse is 

obtained directly.   
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6. Sufficient Conditions for Optimality 

Theorem (6.1) (Sufficient Conditions for 

Optimality): 

In addition to the assumptions (A), (B) and 

(C), suppose that  ⃗⃗⃗   ⃗⃗⃗  ⃗⃗  is convex, with  ⃗⃗  
convex,    and    are affine w.r.t.   for 

each      and      ,     and    are convex 

w.r.t.         and    are convex with respect to 

   for each       and,       . Then the 

necessary conditions in Theorem (5.2) with 

      are sufficient. 

Proof: 

Suppose ⃗  is satisfied the K.T.L. condition, 

the Transversality condition and  ⃗   ⃗⃗⃗    i.e. 

∫ (
       

       
)

 

 
   ⃗⃗⃗⃗  ⃗     ,   ⃗́   ⃗⃗⃗  and 

      ⃗    ,  

where    ∑
 

   
      and    ∑

 

   
      (for 

     ). 

Let    ⃗   ∑       ⃗  
 
   , then  

  ́  ⃗     ⃗⃗⃗⃗  ⃗  ∑    ́   ⃗  
 
      ⃗⃗⃗⃗  ⃗  

  ∫ ∑ (         
) 

      
 

 
   

  ∫ ∑ (         
) 

      
 

 
    

  ∫ ∑ (         
) 

      
 

 
      

since the functions   &   in the R.H.S. of the 

state equation (1) and (2) are affine with 

respect to     and    for each        

respectively, i.e.,  

                               & 

                               

Let  ⃗          &  ⃗̅    ̅   ̅   are two given 

controls and then (by Theorem (3.2)),    

(   
    

)          &  ̅  ( ̅ ̅ 
  ̅ ̅ 

)  

  ̅   ̅   are their corresponding solutions, i.e. 

and for the 1
st
 state equations and their 

corresponding initial condition  

     ∑
 

   
         

   

   

 
                 

                              

∑    
   

  

 
                

          
      

and 

 ̅   ∑
 

   
         

  ̅ 

   

 
               ̅  

       ̅           ̅            

∑    
   

  

 
       ̅         

 ̅         
      

By multiplying the     above equation and 

its initial condition by  ,   [   ]  and the 

    equation and its initial condition by 

     , and adding the obtained equations 

and their obtained initial conditions, one has  

            ̅    

∑
 

   
         

            ̅  

   

 
       

                  ̅              
      ̅                      ̅   
          .................................................... (63a) 

               ̅         
      .... (63b) 

∑    
            ̅  

  

 
                ̅   

on     ......................................................... (63c) 

By the same way and for the second 

differential equations and their initial 

conditions, one gets  

            ̅    

∑
 

   
         

            ̅  

   

 
       

                   ̅              
      ̅                    ̅   
          .................................................... (64a)  

               ̅         
      ... (64b) 

∑    
            ̅  

  

 
              

  ̅   on     ................................................ (64c) 

Equations (63) and (64), tell us that the 

control  ⃗̃    ̃   ̃    with  ⃗̃    ⃗        ⃗̅  

has the corresponding solutions,  ̃    ̃   ̃    

with  ̃             ̅   which means the 

operator  ⃗     ⃗⃗  is convex – linear with 

respect to      ⃗   for each     .  
Now, since for each      ,              is 

affine w.r.t   ,          and             is 

affine w.r.t.    ,           i.e., 

                                 
                               .  

Let  ⃗ & ⃗̅  are two controls, and       ⃗⃗  & 

 ̅   ̅  ⃗⃗̅  are their corresponding solutions, then  

  (  ⃗         ⃗̅ )  

∑ ∫    (                 ̅  
)

 

 
     

    

∑ ∫ [                    ̅  
 

 
]   

     

  ∑ *∫    (                 ̅  
)

 

 
  

   

        +      ∑ [∫             
 

 
 
   

      ̅             ]    

Since the operator   ⃗     ⃗⃗  is convex – linear, 

then  
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  (  ⃗         ⃗̅ )  

∑ ,∫ [                    ̅   
 

 
 
   

        ]        

 ∑ {∫ [                    ̅   
 

 
 
   

        ]    

   (  ⃗         ⃗̅ )       ⃗   

       ( ⃗̅ ) 

     ⃗   is convex – linear w.r.t. (    ⃗    
        .   

From the Assumptions on    &    (   &   ) 

        the integrals  

∑ ∫    
 

 
 
        & ∑ ∫    

 

 
 
        

(∑ ∫    
 

 
 
     &∑ ∫    

 

 
 
     ) are convex 

w.r.t.              and (are convex w.r.t.    

          ), then     ⃗  &    ⃗   are convex 

w.r.t. (    ⃗                       , i.e. 

   ⃗   is convex w.r.t. (    ⃗            
           . On the other hand, since 

 ⃗⃗⃗   ⃗⃗⃗  ⃗⃗  is convex, and the Fréchet derivative 

of     ⃗              exists for each  ⃗   ⃗⃗⃗  
and it is continuous (by Theorem (5.1) and 

assumptions (A),(B)and (C)), then it satisfies  

 ́  ⃗    ⃗⃗⃗⃗  ⃗   , which means    ⃗   has a 

minimum at  ⃗ , i.e. 

      ⃗         ⃗         ⃗         ⃗⃗   
      ⃗⃗         ⃗⃗    ................................. (65)  

Let  ⃗⃗   ⃗⃗⃗    with     , then Transversality 

condition  (64), gives  

     ⃗       ⃗⃗  ,   ⃗⃗   ⃗⃗⃗ , since          

Hence  ⃗  is a continuous classical boundary 

optimal control for the problem.  

 

Conclusions  

In this paper, the existence and uniqueness 

theorem of a continuous classical boundary 

optimal control vector governing by the 

considered couple of nonlinear partial 

differential equation of parabolic type with 

equality and inequality constraints is proved 

using the Galerkin method, the existence of a 

classical boundary optimal control is proved 

under a suitable conditions, while the 

existence and uniqueness solution of the 

couple of adjoint vector equations associated 

with the considered couple equations of the 

state equations is proved and the derivation of 

the Fréchet derivative of the Hamiltonian is 

derived. Finally the theorem of necessary 

conditions and the theorem of sufficient 

conditions of optimality problem with equality 

and inequality constrained are proved. 
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