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Abstract 

In this paper, the function of the pond’s seepage problem is derived using versional approach as 

especial case of generalized dam problem. In this problem the two dimensional cross section will 

produce problem with two free surfers which are evaluated as a part of the problem using 

simulating computer program.          [DOI: 10.22401/JNUS.21.3.17] 
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1. Introduction 

The topic that is closely related to 

differential equations is the calculus of 

variation, which deals with the problem of 

maximizing or minimizing functional that is 

variable values which depend on a variable 

running through a set of functions, or on a 

finite number of such variables, and which are. 

Completely determined by a definite choice of 

these variable functions problems that consist 

of finding maxima or minima of a functional 

are called variational problem, [7].  

The phrase “variational formulation” had 

been used recently in connection with 

generalized formulation of boundary –or initial 

value problems. In boundary value problems, 

sometimes it happens that a part of the 

boundary is unknown and must be determined 

as a part of the solution. This unknown 

boundary occurs in two cases, the first of 

which is called the moving boundary, which 

occurs mostly in heat-flow problems with 

phase changes and in certain diffusion 

processes. The second type is called, a free 

boundary which does not move but its position 

has to be determined as a part of the solution 

of a steady-state problem, [3]. 

The main objective of this article is to deal 

in general with seepage through porous media, 

which is an important source of free boundary 

problems, for example the seepage through 

earth dams, seepage out of open channels such 

as rivers, canals, ponds and irrigation system, 

.etc. [1]. 

Historically, as a literature survey the 

essential features of vаriational methods goes 

back approximately for more than two 

centuries when the first notions of the subject 

for vаriational of calculus began to be 

formulated. Actually, the most primitive ideas 

of vаriational theory had been presented first 

in Ariistothes writings on virtual velocities in 

300 B.C., then they were reviewed by Galileo 

in the sixteenth century. Later, they were 

formulated into a principle of virtual work by 

John Bernolli in 1717. The first step toward 

developing a general method for solving 

variational problems was given by Euler in 

1732, through presenting “a general solution 

of the isoperimetric problem”. It was in this 

work and subsequent writing of Euler that 

variational concepts found a welcome and 

permanent home in mechanics, [4, 6]. 

A more solid mathematical basis for 

variational theory began to be developed in the 

eighteenth and early nineteenth century. 

Necessary conditions for the existence of 

"minimizing curves" of a certain functional 

were studied during this period and we found 

among contributors of that area the familiar 

names of Legendre, Jacobi and Weirstrass, [5]. 

Legendre gave criteria for distinguishing 

between maxima and minima in 1786 without 

considering criteria for existence. Jacobi gave 

sufficient conditions for existence of an 

extrema of a functional in 1837, [9]. The main 

problem in calculus of variation is to find the 

maximum or minimum values of a given 

functional J(y), this necessary condition is 

called the Euler-Lagrange equation. This 

problem is called, for simplicity, the direct 

problem of calculus of variation [4]. 
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Functional are variable values which 

depend on a variable function running through 

a set of functions or on a finite number of such 

variables, and which are completely 

determined by a definite choice of these 

variable functions, [6]. 

At the end of the nineteenth century and in 

the early years of the twentieth century, we 

found prominent contributions to the subject of 

variational ideas, particularly, in the area of 

problems, were Ritz, Galerkin and Hellinger 

are the pioneers. 

Variational concepts now play a 

fundamental role in applied mathematics. As 

an example, the solution of any ordinary 

problems, such as partial differential 

equations, ordinary differential equations, 

integral equations, etc. is equivalent to the 

minimization of the functional J that 

corresponds to this ordinary equation, [10]. 

As it is well known, the initiation of the 

study of variational principles should be 

attributed to Euler and Lagrange and in a 

broader setting, to Poisson, Cauchy and 

Hamilton. 

In recent time, the development of a 

unified theory for linear problems is given, 

where Hussain E. A. in 1987 studied the 

solution of the boundary value problems using 

variational approach, [8]. Also, Mahlol in 

1993, studied the solution of the direct and 

inverse problems of eigenvalue problems, then 

studying its application for localizing the size 

of Brain tumors, [11]. In addition, among other 

studies concerning the direct and inverse 

problems with application, the study of Ali J. 

A. in 1994 for the mathematical inverse 

problem of acoustic wave scattering, [2]. 

Jabbar in 2001, consider the solution of the 

two-dimensional moving value problems of 

Hele-Show problem, [9]. Finally, Al-Ani in 

2001 consider the study of the two-

dimensional inverse problem of the seepage in 

a simple rectangular dam, [1]. 

In this paper we will solve the seepage 

through a pond which is considered as an 

application to the generalized dam problem, 

this had been dam by using variational 

approach, as well as, evaluate its numerical 

solution. Numerical simulation is carried using 

computer program written in MATLAB 2016a 

for this purpose. 

2. Preliminaries 

In this section, some necessary and basic 

most fundamental concepts related to this 

subject of calculus of variation which are 

useful for understudy this paper are presented 

for completeness purpose the corner stone of 

the variational approach is the formulation of 

the functional related to the problem under 

consideration using Magri’s approach, [12]. 

This approach needs some basic concepts, 

which are given in the next definitions. 

 

Definition (1), [14]: 

Let U and V be two normed linear spaces, 

a bilinear form defined on U and V is a 

functional L: UV  , which is linear in 

both U and V, where u and v are elements of U 

and V respectively, and the following 

properties are fulfilled:  

1.      1 2 1 2L α u+α w,v =α L u,v +α L w,v , 

1α , 2α  , u, w  U , v V. 

2.      1 2 1 2L u,β v+β w =β L u,v +β L v,w , 

1β , 2β  , u U  , v, w V. 
 

this functional is usually denoted by the 

symbol <u,v> . 

 

Definition (2), [14]: 

Let <u,v>be a bilinear form then:  

1. <u,v> is said onto be symmetric if 

<u,v><v,u> for all <u,v> U×V   

2. The bilinear form <u,v> is non-degenerate 

on U and V if 
 

i. <u, v> 0 v 0 , u U      

ii. <u, v> 0 u 0 , v V      
 

Among the following most usual examples 

of non-degenerate bilinear forms: 
τ

0

<u,v> u(t) v(t) dt   

where u, v : C[0, ]  ,  > 0. 
τ

n n
n0

<u,v> u (t) v (t) dt   

where u, v : C[0, ]  ,  > 0. 
n
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 
τ

0

<u,v> u(t)v τ-t dt   

where u, v : C[0, ]  ,  > 0. 

τ s=τ-t

0 s=0

<u,v> u(t) K(t,s)v(s)ds dt
 

  
 

   

where u, v : C[0, ]  ,  > 0. 

 

For problem modeled using PDE’s, the 

must usual used non-degenerate bilinear form 

is given by: 
τ τ

0 0

<u,v> = u(x,t) v(x,t)dtdx    

Where u, v: C ([0, t ]× [0, t ])  , ,t > 0. 

 

Definition (3), [14]:  
A given linear operator L: D (L) →R (L) is 

called symmetric with respect to the chosen 

bilinear form <u,v>  if it satisfies: 
 

<Lu,v> <Lv,u>  
 

Finally, we end this section with the 

mathematical theorem which is called in some 

literation’s Magri’s approach that is used to 

evaluate the functional related to the initial-

boundary value problem under consideration 

and have to be so lead. 

 

Theorem (1), [14]: 

There is a variational problem 
1
2

J(u)= <Lu,u>-<f,u> corresponding to 

initial-boundary value problems Lu  f, if and 

only if the operator L is symmetric relative to 

the chosen bilinear form which is non-

degenerate. 

It is remarkable that, the elementary 

concepts of calculus of variation are not 

presented here and are considered to be known 

to the readers (for more derails see [6, 13, 10]. 

 

3.Mathematical Formulation of the 

Problem 

The mathematical formulation and 

modeling the pond seepage problem must pass 

through the physical derivation of the problem, 

which will not presented here using by 

Darcy’s low for deriving the continuity 

equation and velocity potential function of the 

problem, [15]. 

The mathematical modeling of the problem 

is formulated as a free boundary value 

problem and have the governing equation with 

initial and boundary condition of the pond 

seepage problem, which will has the form (see 

Fig.(1)) 
 

 xx yyΦ +Φ =0 , x,y ΩRor ΩL   .... (1) 

 

with initial and boundary condition for the 

right dam side 

 

 

 

2 1

y

1 0

2 1 2

2

0 1

2

0

(x)) =

R x,0 =0 0 x LR

R x,ER (x) =HR 0 x xR

R x,ER (x) =HR xR x LR

(x,HR(x))= HR(x)

ER (x)

Φ

R xR x xR

R (x,ER x xRxR

,

,

,

,

,

 

  

  

  

  








  

 ................................. (2) 
 

Also, the initial and boundary conditions 

for the left dam side one given by 

      

 

 

 

2 1

y

1 0 0

2 1 2

2

0 1

2(x)) =

x,0 =0 0 x LL

ΦL x,EL (x) =HL 0 x xL

ΦL x,EL (x) =HL xL x LL

( ,HL(x))= HL(x)

EL (x)

ΦL

L x xL x xL

L (x,EL x xLxL

,

,

,

,

,

 

 

 

  

  








  

 ................................. (3) 
 

 
 

Fig.(1) The free surface is assumed to 

seepage. 

 

4. Variational Formulation of the Problem 

To solve pond seepage problem, we have 

to solve equation with its related boundary and 
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initial conditions, as well as the evaluation of 

the free surface as a part of solution of the 

problem. We turn in this section to the 

variational formulation of the problem. The 

related functional derived using Magri’s 

approach is given by: 
 

2 2

x y
J( ) dxdy



     
    ...................... (4) 

 

Where =  1 U  2, and  1 is the right 

sided seepage region which is decomposed for 

computation purpose into the following sub 

regions 
 

RR1  {(x, y): 0  x xR0    , 0  y  ER1(x)} 

RR2  {(x, y): xR0  x xR1, 0  y  HR(x)} 

RR3 {(x, y): xR1  x xR2, 0  y  ER2(x)} 

RR4 {(x, y): xR2  x LR, 0  y  ER2(x)} 
 

while  2 is the left sided seepage region 

and also for computation purpose is 

decomposed into the following sub regions  
 

RL1  {(x, y): 0  x sL0   , 0  y  ML1(x)} 

RL2  {(x, y): sL0  x sL1, 0  y  GL(x)} 

RL3 {(x, y): sL1  x sL2, 0  y  ML2(x)} 

RL4 {(x, y): sL2  x KL, 0  y  ML2(x)} 
 

Hence, the functional J may be rewritten 

for 1  into form:  
 

J ( )  

ER1(x)xR0 
2 2

x y

0 0

dydx   
    

              +

HR(x)xR1
2 2

x y

xR0 0

dydx   
     

              +

ER2(x)xR2
2 2

x y

xR1 0

dydx   
    

              +

ER2(x)LR
2 2

x y

xR2 0

dydx   
     ........ (5) 

 

and 2  respectively in the following form: 

J ( )  

ML1(x)sL0
2 2

x y

0 0

dydx   
     

              +

GL(x)sL1
2 2

x y

sL0 0

dydx   
    

              +

ML2(x)sL2
2 2

x y

sL1 0

dydx   
    

              +

ML2(x)KL
2 2

x y

sL2 0

dydx   
     ........ (6) 

 

5. Numerical Simulation of the Problem 
In order to solve the problem of this paper, 

numerical simulation is carried using computer 

program written in MATLAB 2016a for this 

purpose, suppose for  1 the following 

parameter are considered x0=0.5, x1=1, x2=1.5, 

L=2, H0=1.0, H1=0.5. Also, the free surface is 

assumed to be  
 

2 3
0 1 0 2 0 3 0H(x)=b +b (x-x )+b (x-x ) +b (x-x )

 
  ................................ (7) 

 

applying the boundary conditions, the 

formula becomes as follows: 
 

0

2 3

0 0 3 0

0

1
H(x)=H - (x-x )+B(x-x ) +b (x-x )

M
 

  ................................ (8) 

So,
0 0b =H , 1

0

1
b =–

M
, 2b =B , 

 

OD: the height of the dam which passes 

through the origin (0, 0). If the slope of the 

rectum is M0, the M0 is given with the 

following relationship:  

(See Fig. (2)) 

0

DN
M

ON
  

and  

if   ON = x0,  

then 

0

0

0

H
M =

x
   , 0x  0  

 

AB: the dam reservoir side, which passes 

through the point (L, 0), where L is the length 

of the base of the dam. If the slope of this 

rectangle M1, M1 may be given as follows 

relationship: (see Fig. (2)) 

2
A M = L – x   

2O M = x   

1

MB
M =

AM
, AM   0 
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therefore: 

1

1

2

H
M

L–x
 , 2L x  

 

 
Fig.(2): Cross sectional through two-

dimensional dam. 
 

1

0

1 0

2

1 0

3

M
M

2B(x -x )

3(x -x )

1
+ +

b =    , x1    x0  ......... (9) 

The approximation of the function 
using Ritz method over the four sub reigns R1, 

R2, R3 and R4, respectfully are:  
 

2

1 0

2

2

2 1

2

2 1

1 0

2 0 1

3 1 2

4 2

=y (y-E (x))(A+CX+DY)+H

=y (y-H(x))(A+CX+DY)+H(x)

=y (y-E (x))(A+CX+DY)+E (x)

=y (y-E (x))(A+CX+DY)+H

0 x x

x x x

x x x

x x L

,

,

,

,

  

  

  

  

  

 ................................ (10) 
 

In order to find the coefficients A, B, C 

and D which minimized the functional (5), we 

evaluate the partial derivations of J with 

respect to those constants and everting to zero 

will leads to a liner system ,i.e., if 
 

2 2

1 1

2 2

2 2

2

2 2

2 2

1 0

2 0 2

3 1 2

4 2

=y (y-E (x))C+y (-E (x))(A+CX+DY)

=y (y-H(x))C+y (-H (x))(A+CX+DY)+H (x)

=y (y-E (x))C+y (-H (x))(A+CX+DY)-M

=y (y-E (x))C+Y (-E (x))(A+CX+DY

0 x x

x x x

x x x

x x L

,

,

,

,

x

x

x

x



 





 

 

 

 









   

  ............................... (11) 
 

and 
2 3 2

1 1

2 3 2

2 3 2

2

2 3 2

2 2

1 0

2 0 1

3 1 2

4 2

=3y -2yE (x))(A+CX+DY)+y -y E (x))D

=3y -2yH(x))(A+CX+DY)+(y -y H(x))D

=3y -2yH(x)(A+CX+DY)+(y -y E (x))D

=3y -2yE (x))(A+CX+DY)+(y -y E (x))D

0 x x

x x x

x x x

x x L

,

,

,

,

y

y

y

y

  

  

  

  

   

  ............................... (12) 

 

Then 

1

0

2 2

1

2 2

1x 1 1y 1

0 0

x H(x)

2 2

2x 2y

x 0

x E (x)

2 2

3x 2 3y 2

x 0

2 2

4x 2 4y 2

0 E (xx 1 )
I

2 (y (-E (x))+2 (3y -2yE (x)) dydx
A

2 (y (-H (x))+2 (3y -2yH(x)) dydx

2 (y (-E (x))+2 (3y -2yE (x)) dydx

2 (y (-E (x))+2 (3y -2yE (x))

+

+

+


 



 

 

 

   

  

  

 

 

 

2

2

E (x)L

x 0

dydx   

   

  ............................... (13) 

and 
 

0

0

3x1

2 2 20

0 2x 2y

x 1 0

H(x) 3x1

2 2 0

2x 0

x 0 1 0

2

0

1 0

3

2 0

2y 0

1 0

2

0

y=H(x)

2

0

(
2(x-x )I

= ((x-x ) + ) + ) dx
B 3(x -x )

2(x-x )
+ 2 (y (-(x-x ) - )C

3(x -x )

2(x-x )
y - )(A+Cx+Dy)

x -x

2(x-x )
+2 (-2y((x-x ) + )(A+Cx+Dy)

3(x -x )

2
-y D(x-x )+

(–2(x-x )


 









 
 
 


 

3

0

1 0

(x-x )
))dydx

3(x -x )

  

  ............................... (14)  

and 
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0 1

1

0

2

x E (x)

2 2 2

1x 1 1 1y 1

0 0

x H(x)

2 2 2

2x 2y

x 0

E (x)

2 2 2

3x 2 2 3y 2

0

I
2 ((y (y-E (x))+y (-E (x))x)+2 ((3y _2yE (x))x) dydx

C

+ 2 ((y (y-H(x))+y (-H (x)x)+2 (3y -2yH(x))x dydx

+ 2 (y (y-E (x))+y (-E (x)x)+2 (3y -2yE (x))x


  



 



  

  

   

 

 

2

1

2

2

x

x

E (x)L

2 2 2

4x 2 2 4y 2

x 0

dydx

+ 2 (y (y-E (x))+y (-E (x)x)+2 (3y -2yE (x))x dydx   

 

 

  

 .................................................................... (15) 

and 
 

0 1

1

0

2

x E (x)

3 2 2 3 2

1x 1 1y 1 1

0 0

x H(x)

3 3 2 3 2

2x 2y

x 0

E (x

3 3 2 3 2

3x 2 3y 2 2

0

I
2 (y (-E (x))+2 ((3y -2y E (x))y)+(y -y E (x))) dydx

D

+ 2 ((y (-H (x))+2 (3y -2y H(x))y+y -y H(x)) dydx

+ 2 (y (-E (x))+2 (3y -2y E (x))y+y -y E (x))


  



 

 

  

  

  

 

 

2

1

2

2

x )

x

E (x)L

3 3 2 3 2

4x 2 4x 2 2

x 0

dydx

+ 2 (y (-E (x))+2 (3y -y E (x))y+y -y E (x)) dydx   

 

 

  

  ................................................................... (16) 
 

and upper carry the computer program we 

get the following results:  
 

H0=1.00, H1=0.5, x0=0.5, x1=1, x2=1.5, L=2
2 3

0 1 0 2 0 3 0H(x)=b +b (x-x )+b (x-x ) +b (x-x )
 

  ............................... (17) 
 

Then: 
 

A= –0.0706, B= –0.0037, C= –0.0677,  

D= –0.0403 
 

and 
 

b0=1.0000, b1=0.5000, b2=–1.0000,  

b3=–0.6667 

 

 

 

 

 

 

 

 

 

 
 

Fig. (3): Approximate free surface of the two-

dimensional simple. 
 

Similarly, we carry out the simulation for 

the left dam region  2 with the free surface is 

assumed to be. 

Using MATLAB R2016a, the following 

results have emerged when:  

 

H0=1.00, H1=0.5, s0=–0.5, s1=–1, s2=–1.5,  

K=–2: 
2 3

0 1 0 2 0 3 0G(x)=r +r (x-s )+r (x-s ) +r (x-s )   

  ............................... (18) 
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then 
 

A= 0.1475, B= 0.0000, C= -0.2040, D= 0.0527 
 

and 
 

r0= 0.5000, r1= 1.0000, r2= 0.5000, r3= 2.0000 

 

 
Fig.(4): Approximate free surface of the two-

dimensional simple. 
 

5.Conclusions and Recommendations for 

Future Work: 
From the present work, we may conclude 

that the variational approach that may be used 

to formulate and solve many real life problem 

especially those problems which have so many 

initial and/or boundary condition and/or those 

problems which consists boundary condition 

of free or moving boundaries which must be 

determined as a part of the solution. 

Also, we may recommend some problems 

for future work concerning to topic of this 

thesis, such as: 

 

1. Studying the three-dimensional pond 

seepage problems. 

2. Study the physical and mathematical 

formulation of the invers problem of pond 

seepage problem. 

3. Study and solve the underground water or 

oil or gas reservoirs. 

4. Use other numerical methods to solve the 

pond seepage problem, such the methods 

of lines and finite difference methods. 
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