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Abstract 

In this paper, the two parameters of type I extreme value distribution are estimated for the 

maximum values by using moment’s method and the weighted least square method. The simulation 

approach is used to compare the obtained results of the applied methods in order to get the best 

method to estimate the parameters, in which the simulation process starts by generating random 

samples follows the extreme value distribution. This algorithm is based on three samples of the real 

parameters and with different sample sizes. The results are tabulated for comparison purpose in 

connection with the mean square error. 
 

Conclusions 

Conclusions concerning the scale parameter : 

The results of Tables (1), (2) and (3) shows that the moment method is the best in estimating the 

scale parameter  for small sample size and its iteration, while the method of weighted least squares 

method Is the best for medium and large sample size, except the results of Table (2) which shows 

that the moment method is the best for all sample sizes and their iterations. 

Conclusions concerning the location parameter : 

The results of Tables (1), (2) and (3) shows that the moment method is the best in estimating the 

location parameter  for all sample sizes and their iterations.  [DOI: 10.22401/JNUS.20.4.15] 
 

Keywords: Extreme value distribution type one for maximum, Gumbul distribution, Estimate 

parameters. 
 

1. Introduction 

The extreme value distribution may be 

considered as one of the most important 

distributions, which has so many real life 

applications. The extreme value refers to the 

maximum or minimum value.  

For the extreme value distribution, three 

types or families of distributions had been 

introduced by statisticians [1] in which each 

family represent a family of several 

distributions, namely: 
 

- Type I: Gumbel-type distribution. 

- Type II: Frećhet-type distribution. 

- Type III: Weibull-type distribution. 
 

Type I distributions are of extreme value 

distributions, which is the most important one 

and has so many applications in different areas 

and among of these applications using this 

distribution in the study and applications of 

atmosphere studies, such as the effect of 

atmosphere on sea levels, which are used later 

in ships designing and to predict winds 

strength. Also, using this distribution in the 

theory of water sciences as in the last decades 

researches proved by using this distribution in 

the prediction of ozone quantity and other 

applications are also given for this distribution, 

such as the predication of high and low rates 

of financial stocks [8][12].  

Type II extreme value distribution has no 

wide range of applications. 

The III distributions may be considered as 

one of the most important distributions to 

model failure phenomenon’s and used in 

reliability theory, as well as life testing. From 

the above three types, it is important to notice 

that the extreme value distribution represent a 

derived families from the generalized extreme 

value distribution, and has so many 

applications that has been used by Gumbel in 

the study and measuring of water floods 

(which is specialized in the atmosphere 

variations and to describe winds movements 

and directions, pressure, air humidity, 

temperature, cloud directions, rains, etc.), 

landing force and marine engineering, as well 

as, using this distribution in the study and 

generalization of certain life data. 
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Let X be a random variable follows the 

generalization extreme value distribution, then 

the probability density function (p.d.f.) and 

cumulative distribution function (c.d.f.) of X 

are given respectively by[6]: 
 

f(x;k,,)   
1 1

1
k k1 k k

1 (x ) exp 1 (x )

 
 

 
 

                 
  

  

F(x;k,,)  
1

kk
exp 1 (x

 
       

  

, k  0  ..... (1) 

Where: 

x is a random variable 

k is the shape parameter 

 is the scale parameter 

 is the location parameter 
 

If k  0, then the generalized extreme value 

distribution with three parameters will be the 

generalized extreme value distribution with 

two parameters, since by letting: 
 

1

k
  n  .......................................................... (2) 

and taking the limit as n   after 

substituting eq.(2) back into eq.(1), will yields 

to: 

F  
n
lim


n
1

exp 1 (x )
n

    
     

     

  

= 

n

n

1 x
exp lim 1

n

     
    

    

  ................. (3) 

 

Let: 
 

t  
x 


  ..................................................... (4) 

Now, substitute eq.(4) into eq.(3), we get: 
 

F  

n

n

1
exp lim 1 t

n

   
   

   

  

 
2 3

n n n n
0 1 2 3

n

1 1 1
exp lim C 1 C t C t C t ...

n n n

        
           

         

  

 
2 3

n

1 n(n 1) t n(n 1)(n 2) t
exp lim 1 n t ...

n n n 2! n n n 3!

     
      

      

 

 
2 3

n

1 t 1 2 t
ex p lim 1 t 1 1 1 ...

n 2! n n 3!

       
             

        

  

 
2 3t t

exp 1 t ...
2! 3!

   
      
    

  

= exp[exp(t)]  ........................................... (5) 

 

Also, substituting eq.(4) into eq.(5), will 

yields to: 
 

F(x;,)  
x

exp exp
   
     

  ................ (6)  

 

Equation (6) represent the distribution 

function of the type I extreme value 

distribution (or Gumble-type). In order to find 

the p.d.f., we derive eq.(6) with respect to x, to 

get[7]: 
 

f(x;,) 
 

  
1 x x

exp exp exp
      

            
  .... (7) 

 

while the reliability function related to this 

distribution may be defined as follows[9]: 
 

R(x)  
x

1 exp exp
   

      
  

 

2. Some Moment’s Properties of Type I 

Extreme Value Distribution: 

The n-th order moment has the general 

form: 

E(  )  



 x

n
f(x) dx          X: random variable 

x : the value of  a r.r.  ................................... (8) 

 

Therefore, after substituting eq.(7) into 

eq.(8), we get: 

 

E(  )  n 1 x x
x exp exp exp dx





      
            

   

and since 
x

y exp
 

  
 

, then upon taking 

the natural logarithm to the both sides will 

yields to: 
 

ln y  
x 




  lny  x    x    

lny 

dx   
y


 dy 
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x    y  , x    y  0 

E(x
n
)  

0


 (  lny)

n 1


ye

y
       

y


  dy 

 

0



 (  lny)
n
e
y

 dy 

with n  1 we get the first moment, n  2 

we get the second moment, i.e., 

n  1  E(x)  
0



 (  lny)e
y

 dy 

  
0



 e
y

 dy  
0



 (lny)e
y

 dy 

   + γ  ...................................................... (9) 
 

where: 
 

0



 (lny)e
y

 dy   γ 

γ is Euler’s constant, [2] 

γ  0.5772156649… 

n 2  E(X
2
)  

0



  (  lny)
2
e
y

 dy 

E(X
2
)  

0



  [
2
  2lny + 

2
(lny)

2
]e

y
 dy 

 
2

0



 e
y

 dy  2
0



  (lny)e
y

 dy + 
2

0



  

(lny)
2
e
y

 dy 

 
2
 + 2 γ + 

2
2

2

6

 
   
 

 

 
2
 + 2 γ + 

2
γ

2
 + 

2
2

6


 

 

where: 
 

0



 (lny)e
y

 dy   γ 

0



 (lny)
2
e
y

 dy  γ
2
 + 

2

6


   ......................... (10) 

 

Equation (10) represent the maximum 

population second moment taken from the first 

type extreme value distribution, and since the 

variance is given by: 
 

var(X)  E(X
2
)  [E(X)]

2 
 ........................... (11) 

 

Therefore, substituting eqs.(9), (10) in eq.(11) 

will give: 

var(X)  
2
 + 2 + 

2


2
 + 2

2

6


  [ + ]

2
 

  
2
 + 2 + 

2


2
 + 

2
2

6


  

2
  2  

2


2
 

  
2

2

6


 

 

3. Estimation Methods 

In this section, two methods for estimating 

the parameters of the first type extreme value 

distribution will be presented for maximum 

values. These methods are as follows: 
 

3.1 Method of Moments (MOM): 

Johan and Bernaolle (1667-1748) may be 

considered as the first researchers whom used 

this method in their work, which is one of the 

most popular methods used in parameter 

estimation, which is easy to use. The basic 

idea of this method is to find population 

moments, Mj, which are then equated to 

sample moments, mj, which will results the 

number of equations to be equal to the number 

of unknown parameters. These equations may 

be solved to find the estimated value of the 

parameters, [3].  

If the population moments are given by: 
 

Mj  E(x
j
) 

 

and the sample moments: 
 

mj  
n

j
i

i 1

1
(x )

n 
  

 

Also, as it is known, the sample first 

moment may be defined as: 
 

E(x)  
n

i
i 1

1
x

n 
  

 

while the second moment: 

E(x
2
)  

n
2
i

i 1

1
x

n 
  

Therefore, by eq.(9) the population first 

moment will take the form: 
 

M1   + γ 
 

and the sample first moment: 
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m1  
n

i
i 1

1
x

n 
   m1  x  

 

Hence, equating the population first moment 

M1 with sample first moment m1, yields to: 
 

 + γ  x     x   γ   ........................ (12) 
 

In a similar manner, from eq.(10), the 

population second moment is given by: 
 

M2  
2
 + 2γ + 

2
γ

2
 + 

2
2

6


 

 

and the sample second moment: 
 

m2  
n

2
i

i 1

1
x

n 
  

 

Equating M2 with m2, will give: 
 


2
 + 2γ + 

2
γ

2
 + 

2
2

6


  

n
2
i

i 1

1
x

n 
    ....... (13) 

 

Therefore, substituting eq.(12) into eq.(13) 

implies to: 

( xγ)
2 

+ 2γ( xγ) + 
2
γ

2 
+ 

2
2

6




n
2
i

i 1

1
x

n 
  

2x   2 x γ + 
2
γ

2
 + 2 x γ  2

2
γ

2
 + 

2
γ

2
 + 

2

2

6


  

n
2
i

i 1

1
x

n 
  

2x  + 
2

2

6


  

n
2
i

i 1

1
x

n 
   


2
  

n
2 2
i2

i 1

6 1
x x

n 

 
 

  
   

 

Hence: 
 

mom̂   
n

2 2
i

i 1

6 1
x x

n 




    .................... (14) 

 

It is notable that, equation (14) represent 

the estimation of the scale parameter . 

Finally, substituting eq.(14) into eq.(12) will 

give: 

mom̂   x   
n

2 2
i

i 1

6 1
x x

n 





   ............ (15) 

which is the estimation of the parameter , [4]. 

 

3.2 Weighted Least Squares Method (WLS): 

This method will be used to find the 

estimation of a and b, which are abbreviated as 

â  and b̂ , respectively [5]. This method is 

based upon find the inverse of the distribution 

function, which then compared with simple 

linear regression model given by: 
 

yi  a + bki + ei  .......................................... (16) 
 

where ei is the observation random error 

and in order to find the inverse of the 

distribution function, take eq.(6) which may be 

simplified to find x, as follows: 
 

F(x)  
x

exp exp
   
     

 

x
exp

 
  

 
  ln(F(x)) 

x 


  ln[ln(F(x))] 

 x    ln[ln(F(x))] 

xi    ln[ln(F(xi))]… ........................... (17) 

 

which is the inverse distribution function. 

Comparing eqs.(16) and (17), we have: 

yi  xi, a  , b   

ki  ln[ln(F(xi)], i  1, 2, …, n 
 

and from eq.(16): 
 

ei  yi  a  bki   ......................................... (18) 
 

Now, multiplying eq.(18) by 
i

1

y
 and summing 

its squares, it will take the form:  
 

2 2
n n

i i i

i 1 i 1i i

e y a bk

y y 

    
   

   
  … ................ (19) 

Let 
2

n
i

i 1 i

e
S

y

 
  

 
 , then eq.(19) will be reduced 

to: 

S  

2
n

i i

i 1 i

y a bk

y

  
 
 

  

 

This method has its basis on making S, 

which is called the weighted function of least 

squares, to be minimum, as follows: 
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S  

2
n

i

i 1 i i

k1
1 a b

y y

 
  

 
  

 

since yi  xi, then: 
 

S  

2
n

i

i 1 i i

k1
1 a b

x x

 
  

 
 … ........................ (20) 

 

then by letting 
i

1

x
  wi and i

i

k

x
  zi, we will 

get: 

S   
n

2
i i

i 1

1 aw bz


  … ............................ (21) 

 

Deriving eq.(21) with respect to a and then 

equating the result to zero, yields to: 
 

S

a




  

n

i i i
i 1

2w [1 aw bz ]


     0… ........... (22) 

 

and by multiplying by 1/2, one may get 

with some simplifications: 
 

n

i i i
i 1

w [1 aw bz ]


    0 

 
n

i
i 1

w

   a

n
2
i

i 1

w

   b

n

i i
i 1

w z

   0 

n

i
i 1

w

   b

n

i i
i 1

w z

   a

n
2
i

i 1

w

  

â   

n n

i i i
i 1 i 1

n
2
i

i 1

w b w z

w

 



 



… ............................ (23) 

 

Similarly, deriving eq.(21) with respect to b 

and equating the result to zero, will yields to: 
 

S

b




  

n

i i i
i 1

2z [1 aw bz ]


     0… ............. (24) 

 

Then multiplying eq.(24) by 1/2: 
n

i i i
i 1

z [1 aw bz ]


    0 

 
n

i
i 1

z

   a

n

i i
i 1

z w

   b

n
2
i

i 1

z

   0 

n

i
i 1

z

   b

n
2
i

i 1

z

   a

n

i i
i 1

z w

  

 

Hence: 
 

â   

n n
2

i i
i 1 i 1

n

i i
i 1

z b z

z w

 



 



 ...................................... (25) 

 

Equating eqs.(23) and (25), we get: 
 

n n n n
2

i i i i i
i 1 i 1 i 1 i 1

n n
2
i i i

i 1 i 1

w b w z z b z

w z w

   

 

 



   

 

 

 
n

i
i 1

w



n

i i
i 1

z w

   b

2
n

i i
i 1

z w


 
 
 
   

n
2
i

i 1

w



n

i
i 1

z

  

 b
n

2
i

i 1

w



n
2
i

i 1

z

  

 

b
n

2
i

i 1

w



n
2
i

i 1

z

   b

2
n

i i
i 1

z w


 
 
 
   

n
2
i

i 1

w



n

i
i 1

z

   

n

i
i 1

w



n

i i
i 1

z w

  

b
2

n n n
2 2
i i i i

i 1 i 1 i 1

w z z w
  

  
  
   

     
n

2
i

i 1

w



n

i
i 1

z

   

n

i
i 1

w



n

i i
i 1

z w

  

 

Hence: 
 

n n n n
2
i i i i i

i 1 i 1 i 1 i 1
WLS 2

n n n
2 2
i i i i

i 1 i 1 i 1

w z w z w

b̂

w z w z

   

  




 

 
 

   

  

… .................. (26) 

n n n n
2
i i i i i

i 1 i 1 i 1 i 1
WLS 2

n n n
2 2
i i i i

i 1 i 1 i 1

w z w z w
ˆ

w z w z

   

  

 

 
 

 
 

   

  

  ............... (27) 

which represent the estimation of scale 

parameter. 

Substituting eq.(16) into eq.(27), will give: 
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n n n n
2
i i i i in n

i 1 i 1 i 1 i 1
i i i2

n n ni 1 i 12 2
i i i i

i 1 i 1 i 1

n
2
i

i 1

w z w z w

w w z

w z w z

a

w

   

 

  




 

  
  

 
 

   
 

  



 

 

2 2
n n n n n n n n n n

2 2 2
i i i i i i i i i i i i i

i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1

2
n n n n

2 2 2
i i i i i

i 1 i 1 i 1 i 1

w w z w w z w z w z w z w

w w z w z

         

   

   
     

   
  
  
   

         

   

 

n n n n n
2 2
i i i i i i

i 1 i 1 i 1 i 1 i 1

2
n n n n

2 2 2
i i i i i

i 1 i 1 i 1 i 1

w w z z w z

w w z w z

    

   

 
 

 
  
  
   

    

   

  

n n n n
2

i i i i i
i 1 i 1 i 1 i 1

WLS WLS 2
n n n

2 2
i i i i

i 1 i 1 i 1

w z z w z
ˆâ

w z w z

   

  



  
 

 
 

   

  

  ..... (28) 

 

which is the estimation of the location 

parameter. 
 

4. Simulation [10] [11] 

The simulation process has been designed 

in four basic stages, which are important and 

necessary to find the estimation of the 

maximum values of the two parameters of type 

I extreme value distribution. 
 

Stage I (setting the default values): 

This stage is one of the most important 

stages, in which the later stages of the 

simulation process will depend on. In this 

stage, we will set: 

 

(i) Specify default values for the parameters: 

The default values of the parameters which 

consists of three cases, namely: 

A1: (  1,   5), A2:(  3,   1), A3: 

( 2.5,   10) 
 

(ii) Choosing the sample size: 

Different sizes of the sample has been 

selected which are proportional with the effect 

of the sample size on the accuracy of the 

results obtained by using the two approaches 

of this paper, where the small sample size is 

choosing to be n  10, medium sample size to 

be n  50 and large sample size to be n  100. 
 

(iii) Choosing the number of iterations: 

The number of iterations is selected to be  

R  500. 
 

Stage II (the samples generation): 

In this stage, the sample random data are 

generated to follow the first type extreme 

value distribution for maximum values, and as 

follows: 

The inverse of the distribution function of 

the extreme value distribution is given by 

eq.(6), which is: 
 

F(x;,)  x
exp exp

   
     

 

 

Simplifying this formula to get eq.(17), 

hich is the inverse of the distribution function, 

to be as follows: 
 

x     ln(ln(F)) 
 

and by letting U  F, where U is a continuous 

random variable defined on the interval (0,1), 

which then yields to: 
 

x     ln(ln(U)) 
 

from which it can be used to generate random 

sample following the first type extreme value 

distribution for maximum value. 
 

Stage III (evaluating the parameters): 

In this stage, the distribution parameters are 

estimated by using the estimation method 

proposed in this paper, which are the moment 

method given by eqs.(14) and (15) and the 

weighted least squares method given by 

eqs.(27) and (28). 
 

Stage IV (comparing the results): 

This stage is the last one in the formulation 

of the simulation model, in which a 

comparison is made between the extreme 

value distribution parameters estimation 

results obtained in stage III by using the norm 

of the mean square error given by: 
 

MSE( p̂ )  
1

R

R
2

i
i 1

ˆ(p p)


  

where: 

p̂  is the estimation of the parameter p 

R is the number of sample iterations 
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5. Simulation Results 

Using the proposed estimation methods, the 

results presented in table (1) are obtained: 

 

 

Table (1) 

The MSE for estimating the two parameters for the first model A1: (  1,   5). 
 

N Method  Best  Best 

10 

MOM 
0.90163 

)0.08905) 
MOM 

5.06467 

)0.11022( 
MOM 

WLS 
1.12323 

)0.10143) 

5.31054 

)0.21904( 

50 

MOM 
0.97191 

(0.01989) 
WLS 

5.00357 

(0.02381) 
MOM 

WLS 
1.03464 

(0.01520) 

5.20418 

(0.07038) 

100 

MOM 
0.98883 

(0.01101) 
WLS 

5.00155 

(0.01185) 
MOM 

WLS 
1.02506 

(0.00819) 

5.19144 

(0.05050) 

 

Table (2) 

The MSE for estimating the two parameters for the second model A2: (  3,   1). 
 

N Method  Best  Best 

10 

MOM 
2.70492 

)0.80145) 
MOM 

1.194 

)0.99204( 
MOM 

WLS 
2.57750 

)1.35334) 

0.43757 

)2.64792( 

50 

MOM 
2.91573 

)0.17902( 
MOM 

1.01107 

)0.21434( 
MOM 

WLS 
2.59262 

)0.55659) 

0.76744 

(3.33437) 

100 

MOM 
2.96650 

(0.09915) 
MOM 

1.00465 

(0.10668) 
MOM 

WLS 
2.72391 

(0.47621) 

0.85628 

(3.58671) 
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Table (3) 

The MSE for estimating the two parameters for the third model A3: (  2.5,   10). 
 

N Method  Best  Best 

10 

MOM 
2.25410 

(0.55656) 
MOM 

10.16166 

(0.68892) 
MOM 

WLS 
2.79482 

(0.61012) 

10.34863 

(1.02928) 

50 

MOM 
2.42977 

(0.12432) 
WLS 

10.00895 

(0.14885) 
MOM 

WLS 
2.58630 

(0.09326) 

10.01445 

(0.22928) 

100 

MOM 
2.47209 

(0.06885) 
WLS 

10.00387 

(0.07408) 
MOM 

WLS 
2.56292 

(0.04980) 

9.96834 

(0.11291) 

 

6. Recommendations 
From the results of this paper, it is 

recommended to use the MOM to estimate the 

distribution parameters of real life models for 

all sample sizes and their iterations. 
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