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Abstract

In this paper we introduce principally generalized lifting as a generalization of principally lifting
modules and we prove under certain conditions some relations between Mij-projective (quasi-

discrete) and PGD;. [DOI: 10.22401/JNUS.20.4.14]
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6, Introduction

Let R be an associative ring with identity
and let M be a unital R-module.A sub module
L of an R-module M is called small for(short L
& M), if K+ L # M for any proper sub
module K of M. A module M is called hollow,
if every proper submodule of M is small in M
[1]. A non zero module M is called so- semi
hollow, if each proper finitely generated sub
module is small in M, and a non zero module
M is so- called P-hollow, if each proper cyclic
sub module is small in M [5].1t is clear that
every hollow is semi hollow and every semi
hollow is P- hollow. A module M is called
lifting (or has the condition Dy), if for every
submodule L of M, there is a decomposition
M=N@ S Ssuchthat N<Land SNL KM
[2]. It was introduced in [3] that a module M is
principally lifting module (or has PD;), if for
all m eM, M has a decomposition M=N @ S
with N <mR and mR N S « M. M is said to
have condition (D;) in case, if B is a su
module of M with M / B is isomorphic to
summand of M then B is a summand of M [4].
A module M is called a discrete module, if it
has the condition (D;) and (D). M is said to
have the condition (D3) just in case of if M;
and M; are summand.Such that M; + M, = M
then M; N M3 is a summand of M. A module
M is called so- a quasi- discret module, if it
has the condition (D) and (D3). [4]

A modul M is so- called a generalized
lifting module, if every submodule L of M,
there is a decomposition M = My @ M, such
that M; < L and M, N L < Rad(M). As a
generalization of Principally lifting module we
introduce a principally generalized lifting
module (for short PGD;). Where Rad (M) is
the Jacobson radical of M. It is known that

Rad (M) equal the sum of all small
submodules of M. [4]. In this paper we study
the relation between PD; and PGD; modules
and prove some properties of a PGD;.

6, P-hollows and the condiion (PGD;)

In this section we introduce PGD; module
as a generalization of PD4, that appeared in [3]
and we prove results on PGD; module.

We start by the following.

Lemma (2.1) [5,2.15]:
Let M be a module then
1. If M is semi- hollow, then each factor
modul is semi-hollow.
2.1f B « M and M / B is semi-hollow then
M is semi-hollow.
3. M is semi-hollow if and only if M is local
or Rad(M) = M",

Proposition (2.2) [3]:
The following are equivalent for a
module M.
1. M is P- hollow.
2.B « M when M/ B is a non Zero cyclic
module ".

Remark (2.3):

1-P- hollow modules need no hollow just as
is explained in [5] by considering the set
Q of all rational as Z- module (Q / Z) is no
hollow while is no cyclic for all that
proper sub modul K of Q.

2-"hollow module are indecomposable
modules then the direct sums of hollow
module are not hollows, while according
to lemma (2.1), if M = ic @ Pj,where P;
are non-cyclical P-hollows for all i€l, then
M is P — hollow".



Remark (2.4):
Every hollow module is lifting [6].

Definition (2.5):-[5]

A module M is called Principally lifting (or
has (PDy)) if for all m ¢ M, M has a
decomposition M = N @ S with N< mR and
mR N S « M.

As generalization of definition (2.5) we
introduce the following:

Definition (2.6):-

M is principally generalizd lifting (or has
PGD,), If for all m e M, M has a dcomposition
M=A & B with A <mR and mR N B <Rad
(M).

Note:-

hollow module — lifting module —
principally lifting module — principally
generalized lifting module.

Example (2.7):-
1. pr is (PGD]_)
2. Z4 as Z-module is (PGD,).
3. Z,, p is prim number is PGD;.
4. Z as Z- module is not PGD;.

Proposition (2.8):-
The condition (PGD;) is inherited by sum
ands.

Proof:

Suppose that M have the condition PGD;,
also K < ® M, if k € K, when M has a
decomposition M = A @ B with A < kR and
kR N B <Rad(M), it follows that K = A @ (K
N B) and kR N (K N B) < kR N B < Rad(M),
so kR N (KN B) < Rad(K)(due to K < & M).
Therefore K has (PGD;).

Lemma (2.9):-

The following are equivalent for
indecomposable module M.
1- M has (PGD.).
2- M is a P-hollow module.

an

Proof:

(1) = (2) Suppose that 0# me M, Rm is
proper submodule of M, then by (1) there exist
decomposable M = N@S, with N < Rm and
Rm N S < Rad (M), because M is
indcomposable.
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Then either S =0 or N = 0, if S =0 then
M = N, hence M = Rm (Contradiction) (since
Rm is proper), hence N = 0. Thus M= S
therefor Rm NS = Rm N M = Rm < Rad(M)
thus Rm < Rad(M) hence me Rad(M),
Rm << M.[11].

(2)= (1) Since M is P- hollow then for each
proper cyclic sub module mR of M, mR « M.
thusM=0& M and 0 <mR, mR N M =mR
< Rad (M).

The following definition appeared in [7]

Definition (2.10) :-

[7] Suppose that M is an R-module, if
N,L<Mand M =N + L, then L is so- called
generalized supplement of N just is case
N N L < Rad(L). M is called generalized
supplemented or (briefly GS) in case each
submodule N has a generalized supplement in
M.

Example (2. 11):-

[8] Suppose that M is a GS and Rad(M) be
Noetherian or M satisfy A.C.C on small sub
module, then M is a supplemented module.

Lemma (2.12):-

Suppose that M has (PGD;), then each
cyclic submodule mR has a generalized
supplemented S whichever is a summand of
M.

Proof:

Let mR < M then there exist N < mR with
M =N & Sand mR N S <Rad(M), hence M =
mR + S and mR N S < Rad(M), hence S is a
GSofMand S<® M.

Lemma (2.13):-
"The following are equivalent for a module
M."

1- M has PGD;

2- Every one cyclic submodule K of M can
be written as K = N S with N<® M
and S <Rad (M).

3- Each m € M there exist principal ideals |
and J of R such that mR = ml @ mJ,
where mI <® M and mJ < Rad(M).

Proof:

(1) = (2) clear.

(2) = (1) Let K be a cyclic submodul of M
then by(2) K =N @ S with N < ® M and
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S < Rad (M). Write M = N @ N/, it follow
that K=N@ KNN".

Let 1 : N @ N° — N be the natural
projection, we have K N N'=n (K)==n (N &
S) =n (S) < Rad(M). hence M has PGD;.

(2) &(3)Clear.

83 Results on Mj- projective (quasi-
discrete) and PGD; modules.

In this section we prove under certain
conditions some relations between Mj-
projective (quasi- discrete) and PGD; module.

We need the definition:

Definition (3.1)[12]:-

Let M =@ iej Hj, then H;is H;-projective for
each i#j, if every supplement C of Hiin M is a
direct summand.

Lemma (3.2) [9,corollary 4.50]:-

Let M = @ M;, where M ; is hollow and
Mj-projective whenever i# j.-Then M is a
quasi- discrete module.

"It is known that each quasi — discrete
module is a direct sum of hollow sub module
unique up to isomorphism and is fully
relatively projective”.

Proposition (3.3):-

Suppose that M =@iejHi,where each H; is a
hollow module and is H; —projective (j # i).
Then M has (PGD;).

Proof:

Suppose that K is a cyclic sub module of
M, and there exists a finite subset F of | that
K < ®ic ¢ Hi. By lemma (3.2), @ ier Hj is quasi
discrete, thus K can be writtenas K=N @ S
wherever N < ©@ ier Hj,hence N < ® M and
S < Rad( ier Hj).Therefore by lemma (2.13)
M has PGD,).

Proposition (3.4) :-

Suppose that M is module with PGD;, if
M =V + W such that W< ®M and VN W is
cyclic, then W contains  generalized
supplemented of V in M.

Proof:

Because M has PGD; and V N W is cyclic
we have by lemma (2.13) V.N W=N @ S,
where N < ® M and S < Rad (M), Since
W < & M, we have S < Rad (W). Write

Vol.20 (4), December, 2017, pp.89-93

91

Science

W =N @ N;. It followsthat VN W =N @ (V
NWNN)=N® (VN Ny).

Let 1t : N @ N;— N be that natural
projection. It follows that V. N N; = n(N &
(VNAN)=n(VNW)=n(N& S=n(S),
hence n(S) < Rad(M), hence V N N;< Rad(M)
such that M =V + N +N;=V + Ny Therefore
Ny is generalized supplemented of V in M that
is contained in W.

Corollary (3.5) :-

Suppose that M is a module with PGD;
over a principally "ideal ring", if M =V + mR,
then mR contains a generalized supplemented
of Vin M.

Proof:

By lemma(2.13) we have mR = N @ S,
wherever N < ® M and S < Rad(M), it follows
that M = V + N, hence by lemma (2.13) N is
cyclic summand of M, hence V N N is a cyclic
submodule of M and thus apply proposition
(3.4).

Lemma (3.6) :-

Suppose that M is module such that PGDy,
then each indcomposable cyclic submodule C
of M is either small in M or a sum and of M.

Proof:

"by lemma (2.13) we have C =N @ S with
N < ® M and S < RadM)since C is
indecompable either C=S"orC =N, ifC=§,
then C < Rad (M) since C is cyclic, then
C = Rx < Rad(M), hence x € Rad (M) imples
C =Rxissmall in M. If C =N, then C< ® M.

Definition (3.7):-

[4] "A module M is said to be m —
projective, if for every two submodule U,V of
M with M= U + V,there exist f € End(M) with
Imf<U and Im(1- f) < V",

Lemma (3.8):-
[9, 4.47][10, 3.2] let M = M6 M,."Then
following are equivalent.”

1- My is My- projective.

2- fM=N@ Mp,and NN M; <® N
hence M = Ny @ M,, wherever N; < N.




Proposition (3.9):-

Let M = @i=1 P; where the P; are local
modules for all i, if M has(Ds),"then the
following are equivalent".

1- M has PGD;

2- "M is a quasi-discrete module".

Proof:

(1) > (20 Because PGD; and Dj are
inherited by summand, we have p; €& p; has
PGD; and D3 for all i,j (i #})).

If P ® Pi=K+P;, then P = (Pi @ Pj) / Pi=
(K +Pj) /Pj = K/ (K N Py is a cyclic module.
Thus form some m € P; & P;

K=mR+ (KN Pj). By PGD ; for P;® P;
and by lemma (2.13) we get mR=N @ S with
N <®P; & P,So S < Rad (Pi® Pj hence
Pi@Pj:KEBPj:(N@S)'l'(KﬂPj)"'Pj:
N + P j and by(D3) for P; ©P;, we have P; @P;
=N + Pj with N < K. Hence by lemma (3.8) P;
is Pi—projective for all i # j, therefor by lemma
(3.2), M is quasi- discrete.

(2) = (1) it is obvious.

Proposition (3.10):-

Suppose that M is a module over a local
ring R. If M has PGD;, then a cyclic
submodule of M is either small in M or a
summand of M.

Proof:

"The proof follows from lemma (3.6) and
the fact that every cyclic module over a local
ring is a local module”.

Definition (3.11)[3]:-

Suppose that M; and M, be R-modules M;
is said to be Pprojective relative to M, (or My
is M- Pprojective), if for each mye M,
epimorphism ¢g: m;R— myR / K and each
homomorphism ¢: M; — m;R/K, there exists
a homomorphism f : M;—mR with gof = .

Remark (3.12) [3]:-

Cleary every M- projective module is
M- P projectiv, if M is a cyclic module then
each M- Pprojective modul is M - projective
module, there are R-modules M; and My,
where M; is M,- Pprojective whilist My is no
M,-projective. Example M; = Q (the set of all
rational number) R = Z and M; = @ie | Z,
where f: @ e | Z — Q is an epimorphism (as
Q is a homomorphic image of a free
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Z-module). Clearly Q is @ie rZ- projective for
every finite subset F of I, hence Q is (DicZ)-P
projective, while Q is not (@ie Z)—projective,
since f does not split (due to Q not a projective
Z-module).

Lemma (3.13):-

Let M = M@ M, be an R-module. Then
the following are equivalent".

1- My is M, —Pprojective

2- My is myR- projective for all that

m, € M,

For all mye My, if My @ mR = mR +Y,
then there is L <Y such that M; @ moR = L
A msR.

Proof:
(1)= (2) by definition

Pprojective

(2)= (3) by lemma (3.8)

(3)= (1) by lemma(3.8)

of relative

Corollary (3.14):-

Let M = M; @& M, a module over local ring
R- module M; and M, are relatively
Pprojective in that case M has PGD;, if and
only if every one M; and M, have PGD;.

Proof:

<) Suppose that C are arbitrary cyclic
submodule of M then C =(m; + my)R, where
mie Mymye M,, since M; and M, have
PGD,,then we have nothing to prove either
m;= 0 or my=0.

Now to avoid triviality we may consider C
is not a small submodule of M since
C = (m;+my) R <myR + m;R, we have m;R or
myR is not small in M. Without loss of
generality we may assume m;R is no small in
M, hence it is not small in My by pro position
(3.10), miR is a summand of M; and hence
m;R is M,-Pprojective hence m;R is myR-
projective.

Since m;R @ myR = (m; + my)R + myR,
we have by lemma (3.13) that there is N < (m;
+ my)R with m;R@ m;R = N@m;R.It follows
that (m; + my)R =N @ [(m;1 + my)R N myR].
"Since C is a local module and myR is not
contained in C, we have that C = N.To show
that N is a summand of M.
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It is clear that" miR @ M, = N + M, and
hence NNM,=N N (N & m;R) N M, = (m;R
@ mR) N M, N N=myR NN =0 (since
N =C).As m;R <® Mj, where N @ M, = m;R
D M, <® M C =N < ® M. Therefore
C & L = M. The converse follows from
proposition (2.8).
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