On Principally Generalized Lifting Modules

Aseel Amer Hassan

Department of Mathematics, College of Science, University of Baghdad, Baghdad-Iraq. Corresponding Author: aselamer16@gmail.com.

Abstract

In this paper we introduce principally generalized lifting as a generalization of principally lifting modules and we prove under certain conditions some relations between Mj-projective (quasi-discrete) and PGD₁. [DOI: 10.22401/JNUS.20.4.14]

Keywords: lifting modules, principally lifting modules, principally generalized lifting modules.

δ_1 Introduction

Let R be an associative ring with identity and let M be a unital R-module. A sub module L of an R-module M is called small for(short L \ll M), if K + L \neq M for any proper sub module K of M. A module M is called hollow, if every proper submodule of M is small in M [1]. A non zero module M is called so- semi hollow, if each proper finitely generated sub module is small in M, and a non zero module M is so-called P-hollow, if each proper cyclic sub module is small in M [5]. It is clear that every hollow is semi hollow and every semi hollow is P- hollow. A module M is called lifting (or has the condition D_1), if for every submodule L of M, there is a decomposition $M = N \oplus S$ such that $N \leq L$ and $S \cap L \ll M$ [2]. It was introduced in [3] that a module M is principally lifting module (or has PD₁), if for all m \in M, M has a decomposition M = N \oplus S with $N \le mR$ and $mR \cap S \ll M$. M is said to have condition (D₂) in case, if B is a su module of M with M / B is isomorphic to summand of M then B is a summand of M [4]. A module M is called a discrete module, if it has the condition (D₁) and (D₂). M is said to have the condition (D₃) just in case of if M₁ and M_2 are summand. Such that $M_1 + M_2 = M$ then $M_1 \cap M_2$ is a summand of M. A module M is called so- a quasi- discret module, if it has the condition (D_1) and (D_3) . [4]

A modul M is so- called a generalized lifting module, if every submodule L of M, there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq L$ and $M_2 \cap L \leq Rad(M)$. As a generalization of Principally lifting module we introduce a principally generalized lifting module (for short PGD₁). Where Rad (M) is the Jacobson radical of M. It is known that

Rad (M) equal the sum of all small submodules of M. [4]. In this paper we study the relation between PD₁ and PGD₁ modules and prove some properties of a PGD₁.

δ_2 P-hollows and the condiion (PGD₁)

In this section we introduce PGD_1 module as a generalization of PD_1 , that appeared in [3] and we prove results on PGD_1 module.

We start by the following.

Lemma (2.1) [5,2.15]:

Let M be a module then

- 1. If M is semi-hollow, then each factor modul is semi-hollow.
- 2. If B M and M / B is semi-hollow then M is semi-hollow.
- 3. M is semi-hollow if and only if M is local or Rad(M) = M".

Proposition (2.2) [3]:

The following are equivalent for a module M.

- 1. M is P-hollow.
- 2. B M when M / B is a non Zero cyclic module ".

Remark (2.3):

- 1-P- hollow modules need no hollow just as is explained in [5] by considering the set Q of all rational as Z- module (Q / Z) is no hollow while is no cyclic for all that proper sub modul K of Q.
- 2-"hollow module are indecomposable modules then the direct sums of hollow module are not hollows, while according to lemma (2.1), if $M = {}_{i \in I} \bigoplus P_i$, where P_i are non-cyclical P-hollows for all $i \in I$, then M is P hollow".

Remark (2.4):

Every hollow module is lifting [6].

Definition (2.5):-[5]

A module M is called Principally lifting (or has (PD_1)) if for all $m \in M$, M has a decomposition $M = N \oplus S$ with $N \le mR$ and $mR \cap S \ll M$.

As generalization of definition (2.5) we introduce the following:

Definition (2.6):-

M is principally generalize lifting (or has PGD_1), If for all $m \in M$, M has a decomposition $M = A \oplus B$ with $A \le mR$ and $mR \cap B \le Rad$ (M).

Note:-

hollow module \rightarrow lifting module \rightarrow principally lifting module \rightarrow principally generalized lifting module.

Example (2.7):-

- 1. \mathbb{Z}_{P}^{∞} is (PGD_1) .
- 2. Z_4 as Z-module is (PGD₁).
- 3. Z_p , p is prim number is PGD_1 .
- 4. Z as Z- module is not PGD₁.

Proposition (2.8):-

The condition (PGD_1) is inherited by sum ands.

Proof:

Suppose that M have the condition PGD_1 , also $K \leq \oplus M$, if $k \in K$, when M has a decomposition $M = A \oplus B$ with $A \leq kR$ and $kR \cap B \leq Rad(M)$, it follows that $K = A \oplus (K \cap B)$ and $kR \cap (K \cap B) \leq kR \cap B \leq Rad(M)$, so $kR \cap (K \cap B) \leq Rad(K)$ (due to $K \leq \oplus M$). Therefore K has (PGD_1) .

Lemma (2.9):-

The following are equivalent for an indecomposable module M.

- 1- M has (PGD₁).
- 2- M is a P-hollow module.

Proof:

 $(1) \Rightarrow (2)$ Suppose that $0 \neq m \in M$, Rm is proper submodule of M, then by (1) there exist decomposable $M = N \bigoplus S$, with $N \leq Rm$ and $Rm \cap S \leq Rad$ (M), because M is indcomposable.

Then either S=0 or N=0, if S=0 then M=N, hence M=Rm (Contradiction) (since Rm is proper), hence N=0. Thus M=S therefor $Rm \cap S=Rm \cap M=Rm \leq Rad(M)$ thus $Rm \leq Rad(M)$ hence $m \in Rad(M)$, Rm << M.[11].

 $(2)\Rightarrow$ (1) Since M is P- hollow then for each proper cyclic sub module mR of M, mR \ll M. thus M = 0 \oplus M and 0 \leq mR, mR \cap M = mR \leq Rad (M).

The following definition appeared in [7]

Definition (2.10) :-

[7] Suppose that M is an R-module, if $N,L \leq M$ and M = N + L, then L is so-called generalized supplement of N just is case $N \cap L \leq Rad(L)$. M is called generalized supplemented or (briefly GS) in case each submodule N has a generalized supplement in M.

Example (2. 11):-

[8] Suppose that M is a GS and Rad(M) be Noetherian or M satisfy A.C.C on small sub module, then M is a supplemented module.

Lemma (2.12):-

Suppose that M has (PGD₁), then each cyclic submodule mR has a generalized supplemented S whichever is a summand of M.

Proof:

Let $mR \le M$ then there exist $N \le mR$ with $M = N \oplus S$ and $mR \cap S \le Rad(M)$, hence M = mR + S and $mR \cap S \le Rad(M)$, hence S is a GS of M and $S \le M$.

Lemma (2.13):-

"The following are equivalent for a module M."

- 1- M has PGD₁
- 2- Every one cyclic submodule K of M can be written as $K = N \oplus S$ with $N \leq \oplus M$ and $S \leq Rad(M)$.
- 3- Each $m \in M$ there exist principal ideals I and J of R such that $mR = mI \oplus mJ$, where $mI \leq \oplus M$ and $mJ \leq Rad(M)$.

Proof:

- $(1) \Rightarrow (2)$ clear.
- (2) \Rightarrow (1) Let K be a cyclic submodul of M then by(2) K = N \bigoplus S with N \leq \bigoplus M and

 $S \le Rad (M)$. Write $M = N \oplus N'$, it follow that $K = N \oplus K \cap N'$.

Let $\pi: N \oplus N' \to N'$ be the natural projection, we have $K \cap N' = \pi(K) = \pi(N \oplus S) = \pi(S) \le \text{Rad}(M)$. hence M has PGD₁.

 $(2) \Leftrightarrow (3)$ Clear.

\S_3 Results on Mj- projective (quasi-discrete) and PGD₁ modules.

In this section we prove under certain conditions some relations between Mj-projective (quasi- discrete) and PGD₁ module.

We need the definition:

Definition (3.1)[12]:-

Let $M = \bigoplus_{i \in j} H_i$, then H_i is H_j -projective for each $i \neq j$, if every supplement C of H_i in M is a direct summand.

Lemma (3.2) [9,corollary 4.50]:-

Let $M=\bigoplus M_i$, where M_i is hollow and Mj-projective whenever $i\neq j$. Then M is a quasi-discrete module.

"It is known that each quasi – discrete module is a direct sum of hollow sub module unique up to isomorphism and is fully relatively projective".

Proposition (3.3):-

Suppose that $M = \bigoplus_{i \in j} H_i$, where each H_i is a hollow module and is H_j -projective $(j \neq i)$. Then M has (PGD_1) .

Proof:

Suppose that K is a cyclic sub module of M, and there exists a finite subset F of I that $K \leq \bigoplus_{i \in F} H_i$. By lemma (3.2), $\bigoplus_{i \in F} H_i$ is quasi discrete, thus K can be written as $K = N \bigoplus S$ wherever $N \leq \bigoplus_{i \in F} H_i$,hence $N \leq \bigoplus$ M and $S \leq Rad(\bigoplus_{i \in F} H_i)$. Therefore by lemma (2.13) M has PGD₁).

Proposition (3.4) :-

Suppose that M is module with PGD_1 , if M = V + W such that $W \le \oplus M$ and $V \cap W$ is cyclic, then W contains generalized supplemented of V in M.

Proof:

Because M has PGD_1 and $V \cap W$ is cyclic we have by lemma (2.13) $V \cap W = N \oplus S$, where $N \leq \oplus M$ and $S \leq Rad$ (M), Since $W \leq \oplus M$, we have $S \leq Rad$ (W). Write

 $W = N \oplus N_1$. It follows that $V \cap W = N \oplus (V \cap W \cap N_1) = N \oplus (V \cap N_1)$.

Let $\pi: N \oplus N_1 \rightarrow N$ be that natural projection. It follows that $V \cap N_1 = \pi(N \oplus (V \cap N_1)) = \pi(V \cap W) = \pi(N \oplus S) = \pi(S)$, hence $\pi(S) \leq Rad(M)$, hence $V \cap N_1 \leq Rad(M)$ such that $M = V + N + N_1 = V + N_1$. Therefore N_1 is generalized supplemented of V in M that is contained in W.

Corollary (3.5) :-

Suppose that M is a module with PGD_1 over a principally "ideal ring", if M = V + mR, then mR contains a generalized supplemented of V in M.

Proof:

By lemma(2.13) we have $mR = N \oplus S$, wherever $N \leq \oplus M$ and $S \leq Rad(M)$, it follows that M = V + N, hence by lemma (2.13) N is cyclic summand of M, hence $V \cap N$ is a cyclic submodule of M and thus apply proposition (3.4).

Lemma (3.6) :-

Suppose that M is module such that PGD₁, then each indcomposable cyclic submodule C of M is either small in M or a sum and of M.

Proof:

"by lemma (2.13) we have $C = N \oplus S$ with $N \leq \oplus M$ and $S \leq Rad(M)$,since C is indecompable either C = S" or C = N, if C = S, then $C \leq Rad(M)$ since C is cyclic, then $C = Rx \leq Rad(M)$, hence $x \in Rad(M)$ imples C = Rx is small in M. If C = N, then $C \leq \oplus M$.

Definition (3.7):-

[4] "A module M is said to be π – projective, if for every two submodule U,V of M with M= U + V,there exist $f \in End(M)$ with $Imf \le U$ and $Im(1-f) \le V$ ".

<u>Lemma (3.8):-</u>

- [9, 4.47][10, 3.2] let $M = M_1 \oplus M_2$."Then following are equivalent."
 - 1- M_1 is M_2 projective.
- 2- If $M = N \oplus M_2$, and $N \cap M_2 \leq \oplus N$ hence $M = N_1 \oplus M_2$, wherever $N_1 \leq N$.

Proposition (3.9):-

Let $M = \bigoplus_{i=1} P_i$, where the P_i are local modules for all i, if M has (D_3) ,"then the following are equivalent".

- 1- M has PGD₁
- 2- "M is a quasi-discrete module".

Proof:

(1) \Rightarrow (2) Because PGD₁ and D₃ are inherited by summand, we have $p_i \oplus p_j$ has PGD₁ and D₃ for all i,j (i \neq j).

If $P_i \oplus P_j = K + P_j$, then $P_i \cong (P_i \oplus P_j) / P_j = (K + P_j) / P_j \cong K / (K \cap P_j)$ is a cyclic module. Thus form some $m \in P_i \oplus P_i$

 $K = mR + (K \cap P_j)$. By PGD $_1$ for $P_i \bigoplus P_j$ and by lemma (2.13) we get $mR = N \bigoplus S$ with $N \leq \bigoplus P_i \bigoplus P_j$, So $S \leq Rad (P_i \bigoplus P_j)$ hence $P_i \bigoplus P_j = K \bigoplus P_j = (N \bigoplus S) + (K \cap P_j) + P_j = N + P_j$ and by(D₃) for $P_i \bigoplus P_j$, we have $P_i \bigoplus P_j = N + P_j$ with $N \leq K$. Hence by lemma (3.8) P_i is P_j —projective for all $i \neq j$, therefor by lemma (3.2), M is quasi-discrete.

 $(2) \Rightarrow (1)$ it is obvious.

Proposition (3.10):-

Suppose that M is a module over a local ring R. If M has PGD₁, then a cyclic submodule of M is either small in M or a summand of M.

Proof:

"The proof follows from lemma (3.6) and the fact that every cyclic module over a local ring is a local module".

Definition (3.11)[3]:-

Suppose that M_1 and M_2 be R-modules M_1 is said to be Pprojective relative to M_2 (or M_1 is M_2 - Pprojective), if for each $m_2 \in M_2$ epimorphism $g: m_2R \to m_2R$ / K and each homomorphism $\phi: M_1 \to m_1R/K$, there exists a homomorphism $f: M_1 \to m_2R$ with $g \circ f = \phi$.

Remark (3.12) [3]:-

Cleary every M- projective module is M- P projectiv, if M is a cyclic module then each M- Pprojective modul is M - projective module, there are R-modules M_1 and M_2 , where M_1 is M_2 - Pprojective whilist M_1 is no M_2 -projective. Example $M_1 = Q$ (the set of all rational number) R = Z and $M_2 = \bigoplus_{i \in I} Z$, where $f: \bigoplus_{i \in I} Z \to Q$ is an epimorphism (as Q is a homomorphic image of a free

Z-module). Clearly Q is $\bigoplus_{i \in F} Z$ - projective for every finite subset F of I, hence Q is $(\bigoplus_{i \in I} Z)$ -P projective, while Q is not $(\bigoplus_{i \in I} Z)$ -projective, since f does not split (due to Q not a projective Z-module).

Lemma (3.13):-

Let $M = M_1 \oplus M_2$ be an R-module. Then the following are equivalent".

- 1- M_1 is M_2 -Pprojective
- 2- M_1 is m_2R projective for all that $m_2 \in M_2$

For all $m_2 \in M_2$, if $M_1 \oplus m_2 R = m_2 R + Y$, then there is $L \leq Y$ such that $M_1 \oplus m_2 R = L \oplus m_2 R$.

Proof:

- (1)⇒ (2) by definition of relative Pprojective
- $(2) \Rightarrow (3)$ by lemma (3.8)
- $(3) \Rightarrow (1)$ by lemma(3.8)

Corollary (3.14):-

Let $M = M_1 \oplus M_2$ a module over local ring R- module M_1 and M_2 are relatively Pprojective in that case M has PGD₁, if and only if every one M_1 and M_2 have PGD₁.

Proof:

 \Leftarrow) Suppose that C are arbitrary cyclic submodule of M then C = $(m_1 + m_2)R$, where $m_1 \in M_1, m_2 \in M_2$, since M_1 and M_2 have PGD₁,then we have nothing to prove either $m_1 = 0$ or $m_2 = 0$.

Now to avoid triviality we may consider C is not a small submodule of M since $C = (m_1+m_2)$ $R \le m_1R + m_2R$, we have m_1R or m_2R is not small in M. Without loss of generality we may assume m_1R is no small in M, hence it is not small in M_1 by pro position (3.10), m_1R is a summand of M_1 and hence m_1R is M_2 -Pprojective hence m_1R is m_2R -projective.

Since $m_1R \oplus m_2R = (m_1 + m_2)R + m_2R$, we have by lemma (3.13) that there is $N \le (m_1 + m_2)R$ with $m_1R \oplus m_2R = N \oplus m_2R$.It follows that $(m_1 + m_2)R = N \oplus [(m_1 + m_2)R \cap m_2R]$. "Since C is a local module and m_2R is not contained in C, we have that C = N.To show that N is a summand of M.

It is clear that" $m_1R \oplus M_2 = N + M_2$ and hence $N \cap M_2 = N \cap (N \oplus m_2R) \cap M_2 = (m_1R \oplus m_2R) \cap M_2 \cap N = m_2R \cap N = 0$ (since N = C). As $m_1R \leq \oplus M_1$, where $N \oplus M_2 = m_1R \oplus M_2 \leq \oplus M$ $C = N \leq \oplus M$. Therefore $C \oplus L = M$. The converse follows from proposition (2.8).

References

- [1] Fleuery P. "Hollow modules, and local Endmorphism Ring, Pac". J. Math, (53), 379-385, 1974.
- [2] Keskin D. "On lifting Modules, Comm. Algbra" 28(7), 3427-3440, 2000.
- [3] Kamal M. and yousef A. "on principally lifting module" V.2, 127-137, 2007.
- [4] Wisbauer R. "Foundations of module and ring theory, Gordon and Breagh, Reading", 1991.
- [5] Clark J. Lomp C. Vanaja N. and wisbauer R. "lifting modules, Brikhauser-Basel, Ist Edition", 2006.
- [6] Ben A. laroussi hamdouni, "On lifting modules, University of Baghdad, The College of Science", A Thesis of MCS, 2001.
- [7] Xue W. "Characterizations of Semi perfect and Perfect rings, Publications Matematiques", 40115-125, 1996
- [8] Wang Y. and Ding N. "Generalized supplemented Modules", *Taiwanese journal of Math*, 10 (6), 1589-1601, 2006
- [9] Mohamed S. and Muller B.J. "Continuous and discrete modules, Cambridge University Press", 1990.
- [10] Kamal M. and yousef A. "On supplementation and generalized projective modules" to appear in J, Egyptain Math. Soc, 2013.
- [11] Goodearl K.R. "Ring Theory, Pure and Applied Math.", Marcel-Dekker.(33), 1976.
- [12] Anderson F. W. and Fuller K.R. "Ring and Categories of Modules", Springer Verlage, New York. 1992.